%I #12 Feb 18 2022 22:40:36
%S 1,2,1,3,3,1,4,6,3,1,5,10,7,3,1,6,15,14,7,3,1,7,21,25,15,7,3,1,8,28,
%T 41,30,15,7,3,1,9,36,63,56,31,15,7,3,1,10,45,92,98,62,31,15,7,3,1
%N A000012 * A052509.
%C Row sums = A001924: (1, 3, 7, 14, 26, 46, 79, ...). A131252 = A052509 * A000012.
%C From _Clark Kimberling_, Feb 07 2011: (Start)
%C When formatted as a rectangle R with northwest corner
%C 1, 2, 3, 4, 5, 6, ...
%C 1, 3, 6, 10, 15, 21, ...
%C 1, 3, 7, 14, 25, 41, ...
%C 1, 3, 7, 15, 30, 56, ...
%C 1, 3, 7, 15, 31, 62, ...
%C ...
%C the following properties hold:
%C R is the accumulation array of the transpose of A052553 (a version of Pascal's triangle); see A144112 for the definition of accumulation array.
%C row 1: A000027
%C row 2: A000217
%C row 3: A004006
%C row 4: A055795
%C row 5: A057703
%C row 6: A115567
%C limiting row: A000225
%C antidiagonal sums: A001924.
%C (End)
%F A000012 * A052509 as infinite lower triangular matrices.
%e First few rows of the triangle:
%e 1;
%e 2, 1;
%e 3, 3, 1;
%e 4, 6, 3, 1;
%e 5, 10, 7, 3, 1;
%e 6, 15, 14, 7, 3, 1;
%e 7, 21, 25, 15, 7, 3, 1;
%e ...
%Y Cf. A052509, A000012, A001924, A131252.
%K nonn,tabl
%O 0,2
%A _Gary W. Adamson_, Jun 23 2007