%I #30 Sep 22 2024 02:02:45
%S 1,2,1,8,2,2,16,8,4,6,128,16,16,4,24,256,128,32,16,48,120,1024,256,
%T 256,32,192,240,720,2048,1024,512,256,384,64,96,5040,32768,2048,2048,
%U 512,3072,384,384,10080,40320,65536,32768,4096,2048,6144,3072,2304,40320
%N Triangular table of denominators of the coefficients of Laguerre-Sonin polynomials L(1/2,n,x).
%C The corresponding numerator table is given in A131440.
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 775, 22.3.9.
%H Wolfdieter Lang, <a href="/A130562/a130562.txt">Rational coefficients and more</a>
%F a(n,m) = denom(L(1/2,n,m)) with L(1/2,n,m)=((-1)^m)*binomial(n+1/2,n-m)/m!, n>=m>=0, else 0 (taken in lowest terms).
%e Triangle begins:
%e 1;
%e 2, 1;
%e 8, 2, 2;
%e 16, 8, 4, 6;
%e 128, 16, 16, 4, 24;
%e 256, 128, 32, 16, 48, 120;
%e ...
%o (Python)
%o from sympy import binomial, factorial, Integer
%o def a(n, m): return ((-1)**m * binomial(n + 1/Integer(2), n -m) / factorial(m)).denominator()
%o for n in range(21): print([a(n, m) for m in range(n + 1)]) # _Indranil Ghosh_, Jun 29 2017
%Y Cf. A021009 (Coefficient table of n!*L(n, 0, x)).
%K nonn,tabl,frac,easy
%O 0,2
%A _Wolfdieter Lang_, Jul 13 2007