%I
%S 3,23,11,73,73,191,19,229,307,199,433,199,503,431,757,233,71,991,997,
%T 577,1439,1367,89,2089,2053,1873,521,2593,2677,503,2791,3109,3359,
%U 3119,3257,2699,673,2591,3457,4231,4597,2269,2969,719,1753,5059,1993,5449
%N Prime numbers q of the form q=abs(x^2y^3) such that p =A130474(n)= x^2+y^3 is prime and greater than q. (Prime numbers arising from A130474).
%F a(n)= abs(x^2y^3) and A130474(n)=p=x^2+y^3; a(n) < A130474(n); a(n) and A130474(n) are in A000040 (prime numbers)
%e a(4)= 73 because 73= abs(9^22^3)= abs(81  8 ) and A130474(4)= 89 =9^2+2^3= 81+8 ; A130474(4) > a(4) ; A130474(4) and a(4) are prime numbers, members of A000040.
%e a(5)= 73 because 73=abs(10^23^3)= abs(100  27) and A130474(5)= 127 = 10^2+3^3= 100+27 ; A130474(5) > a(5) ; A130474(5) and a(5) are prime numbers, members of A000040.
%e a(9)= 307 because 307= abs(6^2  7^3)=abs(36  343) and A130474(9)= 379 = 6^2+7^3= 36+343 ; A130474(9) > a(9) ; A130474(9) and a(9) are prime numbers, members of A000040.
%Y Cf. A000040; A130474.
%K easy,nonn
%O 1,1
%A _Tomas Xordan_, May 28 2007
