Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 08 2022 08:45:30
%S 0,1,4,14,52,208,884,3952,18460,89648,450892,2341456,12522068,
%T 68819920,387978292,2240112368,13228210684,79794191152,491143503500,
%U 3081692690128,19693923313012,128082776294096,847127801497588
%N a(n) = 4*a(n-1) + (n-6)*a(n-2).
%F a(n) = 4*a(n-1) + (n-6)*a(n-2). - _Vaclav Kotesovec_, Oct 20 2012
%F a(n) ~ 26*sqrt(2)*exp(4*sqrt(n)-n/2-4)*n^(n/2-5/2)*(1-19/(3*sqrt(n))+1/(6*n)) . - _Vaclav Kotesovec_, Oct 20 2012
%t M[n_] := {{0, 1}, {-4 + n, 4}} v[0] = {0, 1}; v[n_] := v[n] = M[n].v[m - 1] a = Table[v[m][[1]], {m, 0, 30}]
%t RecurrenceTable[{a[n] == 4*a[n-1] + (n-6)*a[n-2],a[1]==0,a[2]==1},a,{n,20}] (* _Vaclav Kotesovec_, Oct 20 2012 *)
%o (Magma) [n le 2 select n-1 else 4*Self(n-1)+(n-6)*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, May 24 2013
%K nonn
%O 1,3
%A _Roger L. Bagula_, Jun 15 2007
%E New name from _Vaclav Kotesovec_, Oct 20 2012