login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129909 Primes that are the quotient of the decimal representation of concatenated twin primes divided by 3. 0

%I

%S 11,19,977,1381,1987,75743,93761,115783,213881,273941,285953,4097077,

%T 4337101,4937161,5737241,6497317,6757343,8957563,9097577,10397707,

%U 13057973,14058073,15158183,15458213,15998267,17438411,18338501

%N Primes that are the quotient of the decimal representation of concatenated twin primes divided by 3.

%C Except for the first term, concatenated twin primes are always divisible by 3. This follows from the fact that twin prime components > 3 are of the form 6k-1 and 6k+1. So concatenation in decimal is (6k-1)*10^d + 6k+1 = 6k(10^d+1)+(10^d-1) where d is the number of digits in each twin prime component. Now 10^d-1 = (10-1)(10^(d-1)+10^(d-2)+...+1) = 9h and 6k(10^d+1) + 9h is divided by 3.

%e The first concatenated twin prime pair in decimal representation is 35.

%e The quotient of 35/3 is 11 which is prime and the first term.

%o (PARI) concattwins3p(n) = { local(x,y); forprime(x=2,n, if(isprime(x+2), y=eval(concat(Str(x),Str(x+2)))/3; if(isprime(y),print1(y",")) ) ) }

%K base,frac,nonn

%O 1,1

%A _Cino Hilliard_, Jun 05 2007

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 16:39 EDT 2021. Contains 345365 sequences. (Running on oeis4.)