login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129895 a(1)=1. a(n) = a(n-1) + number of triangular numbers among the first (n-1) terms of the sequence. 2
1, 2, 3, 5, 7, 9, 11, 13, 15, 18, 21, 25, 29, 33, 37, 41, 45, 50, 55, 61, 67, 73, 79, 85, 91, 98, 105, 113, 121, 129, 137, 145, 153, 162, 171, 181, 191, 201, 211, 221, 231, 242, 253, 265, 277, 289, 301, 313, 325, 338, 351, 365, 379, 393, 407, 421, 435, 450, 465, 481 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 0, 2, 0, -2, 1).

FORMULA

For k=1,3: a(8*n+k) = (4*n+k)*(2*n+1). - Reinhard Zumkeller, Dec 20 2007

G.f.: -x*(x^7 - x^6 - x^5 + x^4 + x^3 - x^2 + 1) / ((x-1)^3*(x+1)*(x^4+1)). - Colin Barker, Mar 29 2013

a(n) = 2*a(n-1) - 2*a(n-3) + 2*a(n-5) - 2*a(n-7) + a(n-8); a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=7, a(6)=9, a(7)=11, a(8)=13. - Harvey P. Dale, May 16 2014

MAPLE

T := {seq((1/2)*j*(j+1), j = 1 .. 40)}: a[1] := 1; for n from 2 to 60 do a[n] := a[n-1]+nops(`intersect`(T, {seq(a[i], i = 1 .. n-1)})) end do: seq(a[n], n = 1 .. 60); # Emeric Deutsch, Jun 21 2007

MATHEMATICA

nxt[{a_, t_}]:=Module[{x=t}, {a+t, If[IntegerQ[(Sqrt[8(a+t)+1]-1)/2], x+1, x]}]; Transpose[NestList[nxt, {1, 1}, 70]][[1]] (* or *) LinearRecurrence[ {2, 0, -2, 0, 2, 0, -2, 1}, {1, 2, 3, 5, 7, 9, 11, 13}, 70] (* Harvey P. Dale, May 16 2014 *)

CROSSREFS

Cf. A097602.

Sequence in context: A046654 A280724 A023543 * A256212 A096149 A033055

Adjacent sequences:  A129892 A129893 A129894 * A129896 A129897 A129898

KEYWORD

nonn

AUTHOR

Leroy Quet, Jun 04 2007

EXTENSIONS

More terms from Emeric Deutsch, Jun 21 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 1 16:44 EST 2021. Contains 349430 sequences. (Running on oeis4.)