login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129400 Number of walks of length n on one 60-degree wedge of the equilateral triangular lattice. The walk can go along the walls of the wedge, but cannot cross the walls. 7
1, 2, 8, 32, 144, 672, 3264, 16256, 82688, 427520, 2240512, 11874304, 63533056, 342712320, 1861779456, 10176823296, 55932813312, 308907737088, 1713473323008, 9541666209792, 53322206674944, 298943898451968 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Counts colored Motzkin paths where each of the steps has two possible colors. Series reversion of x/(1+2x+4x^2). - Paul Barry, Sep 04 2007
Hankel transform is 4^C(n+1,2). - Paul Barry, Oct 01 2009
LINKS
Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
Alin Bostan, Calcul Formel pour la Combinatoire des Marches [The text is in English], Habilitation à Diriger des Recherches, Laboratoire d’Informatique de Paris Nord, Université Paris 13, December 2017.
Bostan, Alin ; Chyzak, Frédéric; van Hoeij, Mark; Kauers, Manuel; Pech, Lucien Hypergeometric expressions for generating functions of walks with small steps in the quarter plane. Eur. J. Comb. 61, 242-275 (2017)
Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
FORMULA
a(n) = 2^n*A001006(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(k)*2^(n-2k)*2^k*2^k where C(n) = A000108(n). - Paul Barry, Sep 04 2007
G.f.: 1/(1-2x-4x^2/(1-2x-4x^2/(1-2x-4x^2/(1-2x-4x^2/(1-.... (continued fraction). - Paul Barry, Oct 01 2009
G.f.: (1/(8*x^2)) * (1-2*x-(1-4*x-12*x^2)^(1/2)). - Mark van Hoeij, Nov 02 2009
E.g.f.: a(n) = n! * [x^n] exp(2*x)*BesselI(1,4*x)/(2*x). - Peter Luschny, Aug 25 2012
Recurrence: (n+2)*a(n) = 2*(2*n+1)*a(n-1) + 12*(n-1)*a(n-2) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3*sqrt(3)*6^n/(2*sqrt(Pi)*n^(3/2)) . - Vaclav Kotesovec, Oct 20 2012
a(n) = 2^n*GegenbauerC(n, -n-1, -1/2)/(n+1). - Peter Luschny, May 09 2016
G.f.: A(x) = 1/(1 + 2*x)*c(2*x/(1 + 2*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. Cf. A005572. - Peter Bala, Aug 18 2021
EXAMPLE
a(1) = 2 because we can go east or northeast.
MAPLE
countwalk2 := proc (i::integer, j::integer, n::integer) option remember: if n < 0 or j < 0 or i < j then 0 elif n = 0 and i = 0 and j = 0 then 1 elif n = 0 then 0 else procname(i-2, j, n-1)+procname(i+2, j, n-1)+procname(i-1, j+1, n-1)+procname(i+1, j+1, n-1)+procname(i+1, j-1, n-1)+procname(i-1, j-1, n-1) end if end proc: counter2 := proc (n::nonnegint) option remember: add(add(countwalk2(i, j, n), i = 0 .. 2*n), j = 0 .. n) end proc:
g := n -> simplify(2^n*GegenbauerC(n, -n-1, -1/2)/(n+1)):
seq(g(n), n=0..21); # Peter Luschny, May 09 2016
T := proc(n, k) option remember;
if n < 0 or k < 0 then 0
elif n = 0 then binomial(2*k, k)/(k+1)
else 2*(T(n-1, k+1) - T(n-1, k)) fi end:
a := n -> T(n, 1): seq(a(n), n=0..21); # Peter Luschny, Aug 23 2017
MATHEMATICA
CoefficientList[Series[1/(8*x^2)*(1-2*x-Sqrt[1-4*x-12*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
Sequence in context: A150862 A150863 A084137 * A003304 A150864 A202814
KEYWORD
nonn,walk,easy
AUTHOR
Rebecca Xiaoxi Nie (rebecca.nie(AT)utoronto.ca), May 28 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 22:04 EDT 2024. Contains 375979 sequences. (Running on oeis4.)