|
|
A129400
|
|
Number of walks of length n on one 60-degree wedge of the equilateral triangular lattice. The walk can go along the walls of the wedge, but cannot cross the walls.
|
|
7
|
|
|
1, 2, 8, 32, 144, 672, 3264, 16256, 82688, 427520, 2240512, 11874304, 63533056, 342712320, 1861779456, 10176823296, 55932813312, 308907737088, 1713473323008, 9541666209792, 53322206674944, 298943898451968
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Counts colored Motzkin paths where each of the steps has two possible colors. Series reversion of x/(1+2x+4x^2). - Paul Barry, Sep 04 2007
Hankel transform is 4^C(n+1,2). - Paul Barry, Oct 01 2009
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2^n*A001006(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(k)*2^(n-2k)*2^k*2^k where C(n) = A000108(n). - Paul Barry, Sep 04 2007
G.f.: 1/(1-2x-4x^2/(1-2x-4x^2/(1-2x-4x^2/(1-2x-4x^2/(1-.... (continued fraction). - Paul Barry, Oct 01 2009
G.f.: (1/(8*x^2)) * (1-2*x-(1-4*x-12*x^2)^(1/2)). - Mark van Hoeij, Nov 02 2009
E.g.f.: a(n) = n! * [x^n] exp(2*x)*BesselI(1,4*x)/(2*x). - Peter Luschny, Aug 25 2012
Recurrence: (n+2)*a(n) = 2*(2*n+1)*a(n-1) + 12*(n-1)*a(n-2) . - Vaclav Kotesovec, Oct 20 2012
a(n) = 2^n*GegenbauerC(n, -n-1, -1/2)/(n+1). - Peter Luschny, May 09 2016
G.f.: A(x) = 1/(1 + 2*x)*c(2*x/(1 + 2*x))^2, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. Cf. A005572. - Peter Bala, Aug 18 2021
|
|
EXAMPLE
|
a(1) = 2 because we can go east or northeast.
|
|
MAPLE
|
countwalk2 := proc (i::integer, j::integer, n::integer) option remember: if n < 0 or j < 0 or i < j then 0 elif n = 0 and i = 0 and j = 0 then 1 elif n = 0 then 0 else procname(i-2, j, n-1)+procname(i+2, j, n-1)+procname(i-1, j+1, n-1)+procname(i+1, j+1, n-1)+procname(i+1, j-1, n-1)+procname(i-1, j-1, n-1) end if end proc: counter2 := proc (n::nonnegint) option remember: add(add(countwalk2(i, j, n), i = 0 .. 2*n), j = 0 .. n) end proc:
g := n -> simplify(2^n*GegenbauerC(n, -n-1, -1/2)/(n+1)):
T := proc(n, k) option remember;
if n < 0 or k < 0 then 0
elif n = 0 then binomial(2*k, k)/(k+1)
else 2*(T(n-1, k+1) - T(n-1, k)) fi end:
a := n -> T(n, 1): seq(a(n), n=0..21); # Peter Luschny, Aug 23 2017
|
|
MATHEMATICA
|
CoefficientList[Series[1/(8*x^2)*(1-2*x-Sqrt[1-4*x-12*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,walk,easy
|
|
AUTHOR
|
Rebecca Xiaoxi Nie (rebecca.nie(AT)utoronto.ca), May 28 2007
|
|
STATUS
|
approved
|
|
|
|