This site is supported by donations to The OEIS Foundation.



Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A129289 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+73)^2 = y^2. 9


%S 0,44,95,219,455,744,1460,2832,4515,8687,16683,26492,50808,97412,

%T 154583,296307,567935,901152,1727180,3310344,5252475,10066919,

%U 19294275,30613844,58674480,112455452,178430735,341980107,655438583,1039970712,1993206308,3820176192

%N Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+73)^2 = y^2.

%C Also values x of Pythagorean triples (x, x+73, y).

%C Corresponding values y of solutions (x, y) are in A160041.

%C lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).

%C lim_{n -> infinity} a(n)/a(n-1) = (89+36*sqrt(2))/73 for n mod 3 = {1, 2}.

%C lim_{n -> infinity} a(n)/a(n-1) = (5907+1802*sqrt(2))/73^2 for n mod 3 = 0.

%H G. C. Greubel, <a href="/A129289/b129289.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).

%F a(n) = 6*a(n-3) -a(n-6) +146 for n > 6; a(1)=0, a(2)=44, a(3)=95, a(4)=219, a(5)=455, a(6)=744.

%F G.f.: x*(44+51*x+124*x^2-28*x^3-17*x^4-28*x^5)/((1-x)*(1-6*x^3+x^6)).

%F a(3*k+1) = 73*A001652(k) for k >= 0.

%t Select[Range[0,100000],IntegerQ[Sqrt[#^2+(#+73)^2]]&] (* or *) LinearRecurrence[{1,0,6,-6,0,-1,1},{0,44,95,219,455,744,1460},70] (* _Vladimir Joseph Stephan Orlovsky_, Feb 02 2012 *)

%o (PARI) {forstep(n=0, 100000000, [3 ,1], if(issquare(2*n^2+146*n+5329), print1(n, ",")))}

%o (MAGMA) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(44+51*x+124*x^2-28*x^3-17*x^4-28*x^5)/((1-x)*(1-6*x^3+x^6)))); // _G. C. Greubel_, May 07 2018

%Y Cf. A160041, A129288, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A160042 (decimal expansion of (89+36*sqrt(2))/73), A160043 (decimal expansion of (5907+1802*sqrt(2))/73^2).

%K nonn

%O 1,2

%A Mohamed Bouhamida (bhmd95(AT)yahoo.fr), May 26 2007

%E Edited and two terms added by _Klaus Brockhaus_, May 04 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 05:14 EST 2019. Contains 329839 sequences. (Running on oeis4.)