%I #21 Jun 20 2014 07:45:22
%S 0,0,0,0,0,1,1,3,3,7,7,12,14,20,22,32,34,45,51,63,69,87,93,112,124,
%T 144,156,184,196,225,245,275,295,335,355,396,426,468,498,552,582,637,
%U 679,735,777,847,889,960,1016,1088,1144,1232,1288,1377,1449,1539,1611,1719
%N Number of partitions p of n such that max(p)-min(p)=3.
%C See A008805 and A049820 for the numbers of partitions p of n such that max(p)-min(p)=1 or 2, respectively.
%H Alois P. Heinz, <a href="/A128508/b128508.txt">Table of n, a(n) for n = 0..1000</a>
%H G. E. Andrews, M. Beck and N. Robbins, <a href="http://arxiv.org/abs/1406.3374">Partitions with fixed differences between largest and smallest parts</a>, arXiv:1406.3374 [math.NT], 2014
%F Conjecture. a(1)=0 and, for n>1, a(n+1)=a(n)+d(n), where d(n) is defined as follows: d=0,0,0,1,0 for n=1,...,5 and, for n>5, d(n)=d(n-2)+1 if n=6k or n=6k+4, d(n)=d(n-2) if n=6k+1 or n=6k+3, d(n)=d(n-2)+2Floor[n/6] if n=6k+2 and d(n)=d(n-5) if n=6k+5.
%F G.f. for number of partitions p of n such that max(p)-min(p) = m is Sum_{k>0} x^(2*k+m)/Product_{i=0..m} (1-x^(k+i)). - _Vladeta Jovovic_, Jul 04 2007
%F a(n) = A097364(n,3) = A116685(n,3) = A117143(n) - A117142(n). - _Alois P. Heinz_, Nov 02 2012
%t np[n_]:=Length[Select[IntegerPartitions[n],Max[#]-Min[#]==3&]]; Array[np,60] (* _Harvey P. Dale_, Jul 02 2012 *)
%Y Cf. A008805, A049820, A097364, A116685, A117142, A117143.
%K nonn
%O 0,8
%A _John W. Layman_, May 07 2007
%E More terms from _Vladeta Jovovic_, Jul 04 2007