login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of tilings of a 4 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).
10

%I #15 Aug 19 2024 08:35:18

%S 1,1,33,195,2023,16839,151817,1328849,11758369,103628653,914646205,

%T 8068452381,71189251649,628067760289,5541284098945,48888866203241,

%U 431331449340441,3805499681885145,33574725778806817,296219181642118401,2613448287490035073

%N Number of tilings of a 4 X n board with 1 X 1 and L-shaped tiles (where the L-shaped tiles cover 3 squares).

%H Alois P. Heinz, <a href="/A127870/b127870.txt">Table of n, a(n) for n = 0..500</a>

%H P. Chinn, R. Grimaldi and S. Heubach, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Heubach/heubach40.html">Tiling with L's and Squares</a>, Journal of Integer Sequences, Vol. 10 (2007), Article 07.2.8

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (5, 34, 6, -72, -28, 74, -10, -4, -4).

%F G.f.: (1 - 4 z - 6 z^2 - 10 z^3 - 8 z^4 - 4 z^5) / (1 - 5z - 34 z^2 - 6 z^3 + 72 z^4 + 28 z^5 - 74 z^6 + 10 z^7 + 4 z^8 + 4 z^9).

%e a(2) = 33 because the 4x2 board can be tiled in one way with only square tiles, in 12 ways using one L-tile and 5 square tiles and in 20 ways with 2 L-tiles and 2 square tiles.

%t Table[Coefficient[Normal[Series[(1 - 4 z - 6 z^2 - 10 z^3 - 8 z^4 - 4 z^5)/(1 - 5z - 34 z^2 - 6 z^3 + 72 z^4 + 28 z^5 - 74 z^6 + 10 z^7 + 4 z^8 + 4 z^9), {x, 0, 30}]], x, n], {n, 0, 30}]

%Y Cf. A127864, A127865, A127866, A127867, A127868, A127869.

%Y Column k=4 of A220054. - _Alois P. Heinz_, Dec 03 2012

%K nonn

%O 0,3

%A Silvia Heubach (sheubac(AT)calstatela.edu), Feb 03 2007