login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator of b(n), where b(1) = 2, b(n) = b(n-1) - 1/b(n-1).
5

%I #21 Feb 11 2022 17:54:21

%S 2,3,5,-11,779,497941,181860254581,16687694789137362648661,

%T -263439569256003706800705587722279993788907979,

%U 81512663708476146329709015825571064954724426915346799560162522434680208602364731247764459

%N a(n) = numerator of b(n), where b(1) = 2, b(n) = b(n-1) - 1/b(n-1).

%C Every term of this sequence of numerators is coprime to every other term.

%H M. Chamberland and M. Martelli, <a href="https://chamberland.math.grinnell.edu/papers/mario_digits.pdf">Unbounded Orbits and Binary Digits</a>, Grinnell College.

%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Kimberling/kimberling56.html">Polynomials associated with reciprocation</a>, JIS 12 (2009) 09.3.4

%e A127814/A127815 = 2, 3/2, 5/6, -11/30, 779/330, 497941/257070, 181860254581/128005692870, ...

%t f[l_List] := Append[l, l[[ -1]] - 1/l[[ -1]]];Numerator[Nest[f, {2}, 10]] (* _Ray Chandler_, Feb 07 2007 *)

%t Numerator/@NestList[#-1/#&,2,10] (* _Harvey P. Dale_, Apr 30 2011 *)

%Y Cf. A127815, A242995.

%K easy,frac,sign

%O 1,1

%A _Leroy Quet_, Jan 30 2007

%E Extended by _Ray Chandler_, Feb 07 2007