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Consider the random product
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where 1, 2,   ,  are independent variables satisfying  ( = 1) =  ( = −1) =
12 for each . The maximum value of  () is  + 1, which occurs if and only if

all  are −1. The minimum value of  () is 1( + 1), which occurs if and only if

all  are 1. We are interested in the average behavior of  () and it makes sense

to examine ln( ()) henceforth (with extreme values − ln( + 1) and ln( + 1)

symmetric about the origin).

Before continuing, let us mention the random sum
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which converges almost surely [1, 2]. The maximum value of () diverges to ∞ as

 →∞ and the minimum value of () diverges to −∞. Clearly E(()) = 0 and

Var(()) =
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as  → ∞. It is perhaps surprising that Var(()) is finite. Define  = −1 if
 ≡ 0mod 3 and  = 1 otherwise; define  = −1 if  ≡ 2 3mod 4 and  = 1

otherwise. On the one hand [3],

∞X
=1

(−1)+1


= ln(2)

∞X
=1




=



4
− 1
2
ln(2);

on the other hand [4],
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where  is the Euler-Mascheroni constant [5].

Returning to the product  (), we have E(ln( ())) = 0 and

Var(ln( ())) =
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→ 0977189

as  → ∞. No closed-form expression for this expression is known. Again, it is

perhaps surprising that Var(ln( ())) is finite. By Wallis’ formula [6], we have
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but as before an unbalanced distribution of +1 and −1 exponents leads to divergence
(to either ∞ or 0).

Here is a far more difficult problem. Let () and () denote the numerator

and denominator of  (), expressed in lowest terms. Rather than maximizing  ()

for fixed  as previously, consider instead maximizing (). Note that, by changing

each  to −, the maximum value of () is equal to the maximum value of ().
Hence we lose nothing by studying only numerators in the following.

Let () denote the maximum value of (). See Table 1 for sample values [7].

For example, when  = 6,

the numerator of
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whereas
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is 2632;

hence (6) = 576. Nicolas [8] and de la Bretèche, Pomerance & Tenenbaum [9]

proved that

0107  liminf
→∞

1

 ln()
ln(()) ≤ limsup

→∞

1

 ln()
ln(()) ≤ 2

3
 0667

At the end of [9], the lower bound was improved to 0112 (due to Fouvry). We wonder

whether the limit supremum is equal to the limit infimum and, if so, what the limiting

value might be.

Table 1 Sample Values of Maximum Numerator () and of ln(())( ln())

 1 2 3 4 5 6

() 2 4 16 64 128 576
ln(())

 ln()
10000 08407 07500 06031 05909

 7 8 9 10 11 12

() 4608 16384 64000 640000 2560000 10240000
ln(())

 ln()
06195 05833 05596 05806 05592 05414
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0.1. Highly Composite Numbers. A positive integer  is highly composite

if, for all   , we have ()  (), where () denotes the number of distinct

divisors of . The integer  is also called a -champion. It is known that

|{ ≤  :  is highly composite}| = 
¡
ln()171

¢
as →∞, and conjectured that 171 can be replaced by any constant   ln(30) ln(16) =
12267 [10].

A positive integer  is superior highly composite if there exists   0 such

that, for all positive integers , we have () ≤ (). It is known that

|{ ≤  :  is superior highly composite}| ∼ ln()

as  → ∞. While these asymptotics are well-understood, those for the quotient of
two consecutive highly composite numbers are not.

Define

 = limsup
→∞

1

 ln()
ln(())

where () is as before. If is a sufficiently large superior highly composite number

and  0 is the highly composite number following  , then [10]

 0


≥ 1 + 1

ln()

for any constant    ln(2). Since we know  ≤ 23, it follows that the exponent
2(3 ln(2)) = 0961796 works. A sharper upper bound on  (for example,  ≤ 35
or even  ≤ 12) would be very helpful.

References

[1] K. E. Morrison, Cosine products, Fourier transforms, and random sums, Amer.

Math. Monthly 102 (1995) 716—724; MR1357488 (96h:42001).

[2] B. Schmuland, Random harmonic series, Amer. Math. Monthly 110 (2003) 407—

416; MR2040884 (2005a:60024).

[3] L. B. W. Jolley, Summation of Series, 2nd ed., Dover, 1961, pp. 14—15;

MR0134458 (24 #B511).

[4] J. M. Hyslop, Infinite Series, Oliver and Boyd; Interscience; 1942, p. 67;

MR0007792 (4,193j).

[5] S. R. Finch, Euler-Mascheroni constant, Mathematical Constants, Cambridge

Univ. Press, 2003, pp. 28—40.



Products of Consecutive-Integer Ratios 4

[6] T. J. Osler, The union of Vieta’s and Wallis’s products for pi, Amer. Math.

Monthly 106 (1999) 774—776.

[7] N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, A002182, A002201,

A127588.

[8] J.-L. Nicolas, Nombres hautement composés, Acta Arith. 49 (1988) 395—412;

MR0937935 (89c:11012).

[9] R. de la Bretèche, C. Pomerance and G. Tenenbaum, Products

of ratios of consecutive integers, Ramanujan J. 9 (2005) 131—138;

http://math.dartmouth.edu/~carlp/; MR2166384 (2006e:11147).

[10] J.-L. Nicolas, Some open questions, Ramanujan J. 9 (2005) 251—264; MR2166389

(2006e:11148).


