%I #16 Mar 08 2021 16:40:16
%S 1,2,1,3,0,1,4,0,2,1,5,0,0,0,1,6,0,0,3,2,1,7,0,0,0,0,0,1,8,0,0,0,4,0,
%T 2,1,9,0,0,0,0,0,3,0,1,10,0,0,0,0,5,0,0,2,1,11,0,0,0,0,0,0,0,0,0,1
%N Triangle, reversal of A127093.
%H G. C. Greubel, <a href="/A127094/b127094.txt">Rows n = 1..30 of the triangle, flattened</a>
%F Reversed rows of A127093.
%F T(n, K) = mod(n, k-n-1) - mod(n+1, k-n-1) + 1. - _Mats Granvik_, Sep 02 2007
%e First few rows of the triangle are:
%e 1;
%e 2, 1;
%e 3, 0, 1;
%e 4, 0, 2, 1;
%e 5, 0, 0, 0, 1;
%e 6, 0, 0, 3, 2, 1;
%e ...
%t Table[Mod[n, k-n-1] - Mod[n+1, k-n-1] +1, {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 08 2021 *)
%o (Sage) flatten([[n%(k-n-1) - (n+1)%(k-n-1) + 1 for k in [1..n]] for n in [1..12]]) # _G. C. Greubel_, Mar 08 2021
%o (Magma) [n mod (k-n-1) - (n+1) mod (k-n-1) + 1: k in [1..n], n in [1..12]]; // _G. C. Greubel_, Mar 08 2021
%Y Cf. A000203 (row sums), A126988, A127093.
%K nonn,tabl
%O 1,2
%A _Gary W. Adamson_, Jan 05 2007