%I #12 May 31 2019 03:11:32
%S 1,1,3,16,19,35,89,124,213,763,7843,16449,24292,89325,202942,4959933,
%T 5162875,20448558,46059991,158628531,204688522,363317053,568005575,
%U 51483818803,103535643181,155019461984,1963769186989,2118788648973
%N Denominators of convergents to Khinchin's constant.
%H G. C. Greubel, <a href="/A127006/b127006.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KhinchinsConstant.html">Khinchin's Constant</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KhinchinsConstantDigits.html">Khinchin's Constant Digits</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Khinchin%27s_constant">Khinchin's constant</a>
%e 2, 3, 8/3, 43/16, 51/19, 94/35, 239/89, 333/124, 572/213, 2049/763, ...
%t Denominator[Convergents[ContinuedFraction[Khinchin, 30]]] (* _G. C. Greubel_, May 30 2019 *)
%o (Sage) [continued_fraction(khinchin).convergent(n).denominator() for n in (0..30)] # _G. C. Greubel_, May 30 2019
%Y Cf. A002210, A002211, A127005.
%K nonn
%O 1,3
%A _Eric W. Weisstein_, Jan 02 2007