login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (2*n)!*(2*n-1)/(2^n*n!).
2

%I #29 Sep 08 2022 08:45:29

%S -1,1,9,75,735,8505,114345,1756755,30405375,585810225,12439852425,

%T 288735522075,7273385294175,197646339515625,5763367260275625,

%U 179518217255251875,5948862302837829375,208977775735174070625,7757508341684492015625,303429397707601987696875

%N a(n) = (2*n)!*(2*n-1)/(2^n*n!).

%D V. van der Noort and N. J. A. Sloane, Paper in preparation, 2007.

%H G. C. Greubel, <a href="/A126965/b126965.txt">Table of n, a(n) for n = 0..250</a>

%F E.g.f.: sqrt(1-4*x)/(1-2*x).

%F G.f.: x - 1 + 9*x^2/(Q(0)-9*x), where Q(k)= 1 + 9*x + 2*k*(1+6*x) + 4*x*k^2 - x*(2*k+1)*(2*k+5)^2/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Apr 25 2013

%F a(n) = (1/sqrt(Pi)) * Numerator(Gamma((2n+3)/2) - Gamma((2n+1)/2)), for n>=0. Denominators are 2^(n+1). - _Richard R. Forberg_, Feb 22 2015

%F +(-2*n+3)*a(n) +(2*n-1)^2*a(n-1)=0. - _R. J. Mathar_, Jun 17 2016

%p seq( ((2*n)!*(2*n-1))/(2^n*n!), n=0..20); # _G. C. Greubel_, Jan 29 2020

%t Table[((2n)!(2n-1))/(2^n n!),{n,0,20}] (* _Harvey P. Dale_, Jan 16 2017 *)

%o (PARI) vector(21, n, my(m=n-1); ((2*m)!*(2*m-1))/(2^m*m!)) \\ _G. C. Greubel_, Mar 19 2017

%o (PARI) apply( {A126965(n)=(2*n)!*(2*n-1)/(2^n*n!)}, [0..20]) \\ _M. F. Hasler_, Feb 27 2020

%o (Magma) F:=Factorial; [(F(2*n)*(2*n-1))/(2^n*F(n)): n in [0..20]]; // _G. C. Greubel_, Jan 29 2020

%o (Sage) f=factorial; [(f(2*n)*(2*n-1))/(2^n*f(n)) for n in (0..20)] # _G. C. Greubel_, Jan 29 2020

%o (GAP) F:=Factorial;; List([0..20], n-> (F(2*n)*(2*n-1))/(2^n*F(n)) ); # _G. C. Greubel_, Jan 29 2020

%Y Cf. A001147.

%K sign

%O 0,3

%A _N. J. A. Sloane_, Mar 21 2007