login
a(n) = n^5 - n - 1.
10

%I #29 Sep 08 2022 08:45:29

%S -1,29,239,1019,3119,7769,16799,32759,59039,99989,161039,248819,

%T 371279,537809,759359,1048559,1419839,1889549,2476079,3199979,4084079,

%U 5153609,6436319,7962599,9765599,11881349,14348879,17210339,20511119,24299969,28629119,33554399,39135359,45435389

%N a(n) = n^5 - n - 1.

%C Every number gives remainder 29 when divided by 30, remainder 9 when divided by 10, and remainder 4 when divided by 5.

%H Vincenzo Librandi, <a href="/A126426/b126426.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).

%F G.f.: x*(x^5-5*x^4+40*x^3+50*x^2+35*x-1)/(1-x)^6. - _Colin Barker_, Oct 07 2012

%p A126426:=n->n^5-n-1: seq(A126426(n), n=1..50); # _Wesley Ivan Hurt_, Jan 17 2017

%t a = {}; Do[AppendTo[a, x^5 - x - 1], {x, 1, 100}]; a

%t Table[n^5-n-1,{n,40}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{-1,29,239,1019,3119,7769},40] (* _Harvey P. Dale_, Jul 02 2018 *)

%o (Magma) [n^5-n-1: n in [1..40]]; // _Vincenzo Librandi_, Aug 30 2011

%o (PARI) a(n)=n^5-n-1 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A002327, A002328, A116581, A126420, A126421, A126422, A126423, A126424, A126425.

%K sign,easy

%O 1,2

%A _Artur Jasinski_, Dec 26 2006