login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126364
Number of base 10 n-digit numbers with adjacent digits differing by one or less.
6
10, 28, 80, 230, 664, 1922, 5574, 16188, 47064, 136946, 398746, 1161634, 3385486, 9869934, 28781908, 83948652, 244894048, 714493794, 2084792450, 6083620812, 17753709802, 51812911858, 151218254846, 441351052720
OFFSET
1,1
COMMENTS
[Empirical] a(base,n)=a(base-1,n)+3^(n-1) for base>=n; a(base,n)=a(base-1,n)+3^(n-1)-2 when base=n-1.
FORMULA
G.f.: (1 + 4*x - 22*x^2 + 11*x^3 + 14*x^4 - 3*x^5)/(1 - 6*x + 10*x^2 - x^3 - 6*x^4 + x^5). - Alexander R. Povolotsky_, Aug 18 2011
Conjecture: a(n) = 3*a(n-1) - A025565(n), n >= 2. - Daniel Forgues, Aug 23 2011
MATHEMATICA
CoefficientList[ Series[(1 + 4x - 22x^2 + 11x^3 + 14x^4 - 3x^5)/(1 - 6x + 10x^2 - x^3 - 6x^4 + x^5), {x, 0, 24}], x] (* Robert G. Wilson v, Aug 19 2011 *)
LinearRecurrence[{6, -10, 1, 6, -1}, {10, 28, 80, 230, 664}, 30] (* Vincenzo Librandi, Mar 21 2015 *)
PROG
(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-2](($[i]`-$[i+1]`>1)+($[i+1]`-$[i]`>1))
(PARI) Vec((1+4*x-22*x^2+11*x^3+14*x^4-3*x^5)/(1-6*x+10*x^2-x^3-6*x^4+x^5)+O(x^99)) \\ Charles R Greathouse IV, Aug 23 2011
CROSSREFS
Sequence in context: A124703 A333241 A251319 * A076712 A116973 A352180
KEYWORD
nonn,base,easy
AUTHOR
R. H. Hardin, Dec 26 2006
STATUS
approved