login
a(n) = numerator of H(n) taken mod n, where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number.
2

%I #18 Apr 04 2022 09:07:47

%S 0,1,2,1,2,1,6,1,1,1,1,5,4,3,2,15,5,13,11,15,11,13,8,19,17,3,23,19,1,

%T 7,20,15,13,33,19,25,17,9,28,13,20,35,27,35,22,43,28,23,17,9,20,7,29,

%U 17,19,53,53,15,7,31,46,7,34,27,24,7,11,47,11,13,42,61,56,25,58,9,66,29,44

%N a(n) = numerator of H(n) taken mod n, where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number.

%H T. D. Noe, <a href="/A126083/b126083.txt">Table of n, a(n) for n=1..10000</a>

%t seq = {}; s = 0; Do[s += 1/n; AppendTo[seq, Mod[Numerator[s], n]], {n, 1, 79}]; seq (* _Amiram Eldar_, Dec 01 2020 *)

%t Table[Mod[Numerator[HarmonicNumber[n]],n],{n,80}] (* _Harvey P. Dale_, Apr 04 2022 *)

%Y Cf. A001008.

%K nonn

%O 1,3

%A _Leroy Quet_, Mar 02 2007

%E More terms from _Max Alekseyev_, Mar 06 2007