login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of base 10 circular n-digit numbers with adjacent digits differing by 5 or less.
2

%I #22 May 14 2018 18:20:27

%S 1,10,80,580,4660,37960,311378,2559658,21057948,173287588,1426133270,

%T 11737272106,96600478510,795047628502,6543462720560,53854541701240,

%U 443238127915788,3647975524214452,30023874009147704,247105006940966092

%N Number of base 10 circular n-digit numbers with adjacent digits differing by 5 or less.

%C [Empirical] a(base,n)=a(base-1,n)+F(5) for base>=5.int(n/2)+1 and F(d) is the largest coefficient in (1+x+...+x^(2d))^n

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (11, -21, -19, 34, 8, -15, -1, 2).

%F G.f.: (1 - x - 9*x^2 - 71*x^3 + 116*x^4 + 52*x^5 - 87*x^6 - 9*x^7 + 16*x^8)/((1 + x)(1 - 3*x + x^3)(1 - 9*x + 6*x^2 + 3*x^3 - 2*x^4)). For n<4, a(n) = 5*6^n-4*5^n = A257286(n). - _M. F. Hasler_, May 03 2015

%t LinearRecurrence[{11,-21,-19,34,8,-15,-1,2},{1,10,80,580,4660,37960,311378,2559658,21057948},30] (* _Harvey P. Dale_, May 14 2018 *)

%o (S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-1](($[i]`-$[(i+1)mod N]`>5)+($[(i+1)mod N]`-$[i]`>5))

%K nonn,base

%O 0,2

%A _R. H. Hardin_, Dec 28 2006