|
|
A125290
|
|
Numbers with at least two distinct digits in decimal representation, none of which is 0.
|
|
4
|
|
|
12, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 98, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also numbers having at least two partitions into digit values of their decimal representations: A061827(a(n)) > 1.
First differs from A101594 at a(83) = 123 != 131 = A101594(83). - Michael S. Branicky, Dec 13 2021
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Index entries for 10-automatic sequences.
|
|
FORMULA
|
A043537(A004719(a(n))) > 1.
A168046(a(n)) * A043537(A004719(a(n))) > 1. - Reinhard Zumkeller, Jun 18 2013
a(n) ~ n. - Charles R Greathouse IV, Feb 13 2017
|
|
MATHEMATICA
|
Select[Range[100], Length[Union[Select[IntegerDigits[#], #!=0&]]]>1&] (* Harvey P. Dale, May 19 2018 *)
|
|
PROG
|
(Haskell)
a125290 n = a125290_list !! (n-1)
a125290_list = filter ((> 1) . a043537) a052382_list
-- Reinhard Zumkeller, Jun 18 2013
(Python)
def ok(n): s = set(str(n)); return len(s) >= 2 and "0" not in s
print([k for k in range(124) if ok(k)]) # Michael S. Branicky, Dec 13 2021
|
|
CROSSREFS
|
Subsequence of A052382. Supersequence of A101594.
Cf. A125293, A004719, A043537, A061827, A168046.
Sequence in context: A071955 A267760 A261921 * A101594 A162792 A297272
Adjacent sequences: A125287 A125288 A125289 * A125291 A125292 A125293
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
Reinhard Zumkeller, Nov 26 2006
|
|
EXTENSIONS
|
Name clarified by Michael S. Branicky, Dec 13 2021
|
|
STATUS
|
approved
|
|
|
|