login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of digits 1 in all hyperbinary representations of n. A hyperbinary representation of a nonnegative integer n is a representation of n as a sum of powers of 2, each power being used at most twice.
0

%I #16 Sep 07 2024 08:35:46

%S 0,1,1,2,2,3,3,3,4,5,5,5,6,6,6,4,7,8,9,8,10,10,10,7,11,11,12,9,12,10,

%T 10,5,11,12,15,12,17,16,17,11,18,18,20,15,20,17,17,9,18,18,22,16,23,

%U 20,21,12,21,19,22,14,20,15,15,6,16,17,23,17,27,24,27,16,29,28,33,23,33,27,28

%N Number of digits 1 in all hyperbinary representations of n. A hyperbinary representation of a nonnegative integer n is a representation of n as a sum of powers of 2, each power being used at most twice.

%C a(n) = dB(n+1,t)/dt|_{t=1}, where B(n,t) are the Stern polynomials, defined by B(0,t)=0, B(1,t)=1, B(2n,t)=tB(n,t), B(2n+1,t)=B(n+1,t)+B(n,t) for n>=1 (see S. Klavzar et al. and A125184).

%H N. Calkin and H. S. Wilf, <a href="http://www.jstor.org/stable/2589182">Recounting the rationals</a>, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363.

%H S. Klavzar, U. Milutinovic, and C. Petr, <a href="http://dx.doi.org/10.1016/j.aam.2006.01.003">Stern polynomials</a>, Adv. Appl. Math. 39 (2007) 86-95.

%F a(0)=0, a(1)=0, a(2)=1, a(2n+1)=a(n)+a(n+1), a(4n)=2a(2n)-a(n), a(4n+2)=a(2n+2)+a(2n) for n>=1.

%e a(8)=4 because the hyperbinary representations of 8 are 200 (=2*2^2+0*2^1+0*2^0), 120 (=1*2^2+2*2^1+0*2^0), 1000 (=1*2^3+0*2^2+0*2^1+0*2^0) and 112 (=1*2^2+1*2^1+2*1^0), having a total of 0+1+1+2=4 digits 1 (see S. Klavzar et al. Table 1).

%p a[0]:=0: a[1]:=0: a[2]:=1: for n from 1 to 50 do a[2*n+1]:=a[n]+a[n+1]: a[4*n]:=2*a[2*n]-a[n]: a[4*n+2]:=a[2*n+2]+a[2*n] od: seq(a[n+1],n=0..100);

%p B:=proc(n) if n=0 then 0 elif n=1 then 1 elif n mod 2 = 0 then t*B(n/2) else B((n+1)/2)+B((n-1)/2) fi end: seq(subs(t=1,diff(B(n+1),t)),n=0..100);

%t B[0, _] = 0; B[1, _] = 1; B[n_, t_] := B[n, t] = If[EvenQ[n], t*B[n/2, t], B[1 + (n-1)/2, t] + B[(n-1)/2, t]]; a[n_] := D[B[n+1, t], t] /. t -> 1; Table[a[n], {n, 0, 78}] (* _Jean-François Alcover_, Sep 07 2024, after 2nd Maple program *)

%Y Cf. A125184.

%K nonn,base

%O 0,4

%A _Emeric Deutsch_, Dec 05 2006