%I
%S 17,47441,5136468762577,1217,2413992194819190142614641,113,52654897,
%T 241,5310928841473,673
%N Primes of the form 16k+1 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^8 + 1}, where Q is the product of previous terms in the sequence.
%C All prime divisors of (2Q)^8 + 1 are congruent to 1 modulo 16.
%D G. A. Jones and J. M. Jones, Elementary Number Theory, SpringerVerlag, NY, (1998), p. 271.
%H N. Hobson, <a href="http://www.qbyte.org/puzzles/">Home page (listed in lieu of email address)</a>
%e a(3) = 5136468762577 is the smallest prime divisor of (2Q)^8 + 1 = 45820731194492299767895461612240999140120699535617 = 5136468762577 * 33000748370307713 * 270317134666005456817, where Q = 17 * 47441.
%t a = {17}; q = 1;
%t For[n = 2, n <= 3, n++,
%t q = q*Last[a];
%t AppendTo[a, Min[Select[FactorInteger[(2*q)^8 + 1][[All, 1]],
%t Mod[#, 16] == 1 &]]];
%t ];
%t a (* _Robert Price_, Jul 14 2015 *)
%Y Cf. A000945, A094407, A057204A057208, A051308A051335, A124984A124993, A125037A125045.
%K more,nonn
%O 1,1
%A Nick Hobson, Nov 18 2006
%E a(5)..a(10) from _Max Alekseyev_, Oct 18 2008
