

A124910


a(n) = least integer j >= 0 such that n = floor((5^j)/(3^k)) for some integer k >= 0.


2



0, 2, 7, 3, 1, 8, 4, 2, 13, 11, 7, 5, 3, 16, 14, 27, 12, 10, 8, 21, 6, 19, 4, 17, 2, 15, 28, 13, 26, 11, 39, 24, 9, 22, 7, 35, 20, 5, 33, 18, 3, 31, 16, 44, 29, 57, 14, 42, 27, 55, 12, 40, 25, 53, 10, 38, 23, 94, 8, 36, 107, 21, 49, 6, 34, 105, 19, 47, 4, 32, 103, 17, 88, 45, 116, 30
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS



LINKS



EXAMPLE

1 = floor(5^0 / 3^0),
2 = floor(5^2 / 3^2),
3 = floor(5^7 / 3^9),
4 = floor(5^3 / 3^3), ...,
so jsequence = (0,2,7,3,...); ksequence = (0,2,9,3,...).


MAPLE

N:= 100: # for a(1) .. a(N)
V:=Vector(N, 1): count:= 0:
for j from 0 while count < N do
x:= 5^j;
k0:= max(0, floor(log[3](x/N)));
x:= x/3^(k01);
for k from k0 do
x:= x/3;
if x < 1 then break fi;
m:= floor(x);
if m <= N and V[m] = 1 then V[m]:= j; count:= count+1 fi
od od:


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



