login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations with given cycle structure, in the prime factorization order.
68

%I #35 Mar 05 2018 10:51:22

%S 1,1,1,1,2,3,6,1,3,8,24,6,120,30,20,1,720,15,5040,20,90,144,40320,10,

%T 40,840,15,90,362880,120,3628800,1,504,5760,420,45,39916800,45360,

%U 3360,40,479001600,630,6227020800,504,210,403200,87178291200,15,1260,280,25920

%N Number of permutations with given cycle structure, in the prime factorization order.

%C Number of permutations with k1 1-cycles, k2 2-cycles, ...

%H Gheorghe Coserea, <a href="/A124795/b124795.txt">Table of n, a(n) for n = 1..3000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PermutationCycle.html">Permutation cycle</a>

%F For n=p1^k1*p2^k2*... where 2=p1<p2<... are the sequence of all primes, a(n) = a([k1,k2,...]) = (k1+2*k2+...)!/((k1!*k2!*...)*(1^k1*2^k2*...)

%t a[1] = 1; a[n_] := (f1 = FactorInteger[n]; rr = Range[PrimePi[f1[[-1, 1]]]]; f2 = {Prime[#], 0}& /@ rr; ff = Union[f1, f2] //. {b___, {p_, 0}, {p_, k_}, c___} -> {b, {p, k}, c}; kk = ff[[All, 2]]; (kk.rr)!/Times @@ (kk!)/Times @@ (rr^kk)); Array[a, 100] (* _Jean-François Alcover_, Feb 02 2018 *)

%o (PARI)

%o a(n) = {

%o my(f=factor(n), fsz=matsize(f)[1],

%o g=sum(k=1, fsz, primepi(f[k, 1]) * f[k, 2])!,

%o h=prod(k=1, fsz, primepi(f[k, 1])^f[k, 2]));

%o g/(prod(k=1, fsz, f[k, 2]!) * h);

%o };

%o vector(51, n, a(n)) \\ _Gheorghe Coserea_, Feb 02 2018; edited by _Max Alekseyev_, Feb 05 2018

%Y Cf. A000040.

%K nonn

%O 1,5

%A _Max Alekseyev_, Nov 07 2006