Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Mar 30 2012 18:41:04
%S 0,0,0,1,2,3,14,25,51,112,213
%N Number of reduced infinitary amicable pairs (i,j) with i<j and i<=10^n.
%C A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
%H Pedersen J. M., <a href="http://amicable.homepage.dk/knwnc2.htm">Known amicable pairs</a>.
%F Reduced infinitary amicable pairs (m,n) satisfy isigma(m)=isigma(n)=m+n+1, with m<n
%e a(7)=14 because there are 14 reduced infinitary amicable pairs (m,n) with m<n and m<=10^7
%t ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], _?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k_] := Plus @@ InfinitaryDivisors[k] - k; ReducedInfinitaryAmicableNumberQ[n_] := If[properinfinitarydivisorsum[properinfinitarydivisorsum[ n] - 1] == n + 1 && n > 1, True, False]; ReducedInfinitaryAmicablePairList[k_] := (anlist = Select[Range[k], ReducedInfinitaryAmicableNumberQ[ # ] &]; prlist = Table[Sort[{anlist[[n]], properinfinitarydivisorsum[anlist[[n]]] - 1}], {n, 1, Length[anlist]}]; amprlist = Union[prlist, prlist]); data1 = ReducedInfinitaryAmicablePairList[10^7]; Table[Length[Select[data1, First[ # ] < 10^k &]], {k, 1, 7}]
%Y Cf. A126169, A049417, A126168, A037445, A126170, A126171, A126172, A126173, A126174, A126175, A126176.
%K hard,nonn
%O 1,5
%A _Ant King_, Dec 23 2006