Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jan 17 2019 09:20:50
%S 5,8,12,36,24,60,36,84,156,60,204,156,84,180,300,336,120,384,276,144,
%T 456,324,516,744,396,204,420,216,444,1680,516,804,276,1440,300,924,
%U 960,660,1020,1056,360,1860,384,780,396,2460,2604,900,456,924,1416,480,2460
%N LCM (least common multiple) of A001043 (sum of consecutive primes) and A001223 (difference of consecutive primes).
%H Vincenzo Librandi, <a href="/A124434/b124434.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = lcm((prime(n+1)+prime(n)), (prime(n+1)-prime(n))).
%F a(n) = (prime(n+1)^2 - prime(n)^2)/2 for n > 1. - _Jon Maiga_, Jan 17 2019
%e a(3)=12 because prime(3)=5, prime(4)=7 and lcm(7+5, 7-5) = lcm(12,2) = 12.
%t LCM[Total[#],#[[2]]-#[[1]]]&/@Partition[Prime[Range[60]],2,1] (* _Harvey P. Dale_, Apr 19 2013 *)
%t Join[{5}, Table[(Prime[n + 1]^2 - Prime[n]^2)/2, {n, 2, 59}]] (* _Jon Maiga_, Jan 17 2019 *)
%o (PARI) a(n) = my(p = prime(n), q = prime(n+1)); lcm(q+p, q-p); \\ _Michel Marcus_, Mar 15 2018
%Y Cf. A001223, A001043.
%K nonn,look
%O 1,1
%A Mitch Cervinka (Mitch.Cervinka(AT)eds.com), Dec 15 2006