login
Numbers k for which 8*k + 3 and 8*k + 5 are twin primes.
2

%I #12 Dec 19 2019 21:38:08

%S 0,1,7,13,22,28,43,52,82,103,127,136,178,181,202,208,223,241,253,283,

%T 292,406,412,421,433,442,481,502,511,532,568,598,616,637,706,733,766,

%U 787,832,847,853,868,901,913,916,943

%N Numbers k for which 8*k + 3 and 8*k + 5 are twin primes.

%H Amiram Eldar, <a href="/A124192/b124192.txt">Table of n, a(n) for n = 1..10000</a>

%e 0 is a term since 8*0 + 3 = 3 and 8*0 + 5 = 5 are twin primes.

%t Do[If[PrimeQ[8n + 3] && PrimeQ[8n + 5], Print[n]], {n, 1, 1000}]

%o [k:k in [0..1000]|IsPrime(8*k+3) and IsPrime(8*k+5)]; // _Marius A. Burtea_, Dec 19 2019

%Y Cf. A001109, A125821, A125822.

%K nonn

%O 1,3

%A _Artur Jasinski_, Dec 10 2006

%E a(1) inserted by _Amiram Eldar_, Dec 19 2019