%I #10 Aug 11 2019 05:53:32
%S 1,0,4,35,1812,170240,46301673,30413016864,52171354014208,
%T 228072747428273319,2583414317082067853704,75732718487930382583857152,
%U 5773860969402842827019263155009,1146353725688692827225795357533033072,593830518002528577221255815133242142736384
%N Circulants of Fibonacci numbers (without F_0 = 0).
%C A circulant C_n is the determinant of a circulant n X n matrix M, i.e. one with entries M_{i,j}=a_{i-j} where the indices are taken mod n. Notation: C_n = C_n([a_n,a_{n-1},...,a_1]), with the first row of M given.
%C The name circulant is (unfortunately) used for matrices as well as for their determinants. The matrix could be called circular instead.
%C The eigenvalues of a circulant n X n matrix M(n) are lambda^{(n)}_k=sum(a_j*(rho_n)^(j*k),j=1..n), with the n-th roots of unity (rho_n)^k, k=1..n, where rho_n:=exp(2*Pi/n). See the P. J. Davis reference which uses a different convention.
%D P. J. Davis, Circulant Matrices, J. Wiley, New York, 1979.
%F a(n) = product(lambda^{(n)}_k,k=1..n), with lambda^{(n)}_k=sum(F_{j}*(rho_n)^(j*k),j=1..n).
%F a(n) = C_n([F_{n},F_{n-2},...,F_1]) with the Fibonacci numbers F_n:=A000045(n) and the circulant C_n (see comment above).
%e n=4: the circulant 4 X 4 matrix is M(4) = matrix([3,2,1,1],[1,3,2,1],[1,1,3,2],[2,1,1,3]).
%e n=4: 4th roots of unity: rho_4 = I, (rho_4)^2 = -1, (rho_4)^3 = -I, (rho_4)^4 =1, with I^2=-1.
%e n=4: the eigenvalues of M(4) are therefore 1*I^k + 1*(-1)^k + 2*(-I)^k + 3*1^k, k=1,...,4, namely 2-I,1,2+I,7.
%e n=4: a(4)= Det(M(4)) = 35 = (2-I)*1*(2+I)*7.
%o (PARI) a(n) = matdet(matrix(n, n, i, j, fibonacci(n-lift(Mod(j-i, n))))); \\ _Michel Marcus_, Aug 11 2019
%Y Cf. A123744 (Fibonacci circulants including F_0 = 0).
%Y Cf. A052182 (with n instead of Fibonacci(n) and first row reversed).
%K nonn,easy
%O 1,3
%A _Wolfdieter Lang_, Nov 10 2006, Jan 27 2009