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In this note, we prove two formulae for circular variants of squares of binomial coefficients
that appear in sequence A123610. For n > 0 and 0 < k < n, the elements of this (triangular)

sequence are defined by
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Here ¢(d) is Euler’s totient function at positive integer d. (The sequence A123610 actually
starts with 7°(0,0) = 1, but we shall ignore this term.)
First, we prove that the bivariate g.f. of the numbers T'(n, k) is
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For given n > 0, we also prove that the univariate g.f. of the numbers T'(n, k) is given by
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Throughout this note, we assume 7'(n, k) =0 = (Z) for 0 <n < k.
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Proof. Since
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there is 6 € (0,1) such that g(z,y) > 0 and f(z,y) > 0 for all (z,y) € (—6,0) x (—0d,d). All
the calculations that follow are valid (at least) for this rectangle.
To prove equation (1), we use the following formula by E. Deutsch and P. Bala,
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where g(x,y) is given by the second equation in (2). This formula appears at two different
places in the documentation of sequence A008459. Equation (5) implies
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It follows that
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Hence, there is a removable singularity at w = 0 for the integrand in the right-hand side of
equation (6).
We claim that, for each y € (=9, 9),
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We differentiate the RHS of equation (7) w.r.t. w:
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To finish the proof of equation (7), we need to prove that
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This can be achieved by cross-multiplication of the two fractions.
Since f(0,y) =1 for each y € (=0, 9), equations (6) and (7) imply
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We then have

This completes the proof of equation (1).
To prove equation (3), we use an equation by P. Bala, which is stated in the documen-
tation of sequence A008459. For each n > 0,
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where R(n,y) is given by equations (4). We then have
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This completes the proof of equation (3) as well. ]
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