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In this note, we prove two formulae for circular variants of squares of binomial coe�cients
that appear in sequence A123610. For n > 0 and 0  k  n, the elements of this (triangular)
sequence are defined by
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Here �(d) is Euler’s totient function at positive integer d. (The sequence A123610 actually
starts with T (0, 0) = 1, but we shall ignore this term.)

First, we prove that the bivariate g.f. of the numbers T (n, k) is
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where
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For given n > 0, we also prove that the univariate g.f. of the numbers T (n, k) is given by
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where
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Throughout this note, we assume T (n, k) = 0 =
�
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k
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for 0  n < k.
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Proof. Since
lim

(x,y)!(0,0)
g(x, y) = 1 = lim

(x,y)!(0,0)
f(x, y),

there is � 2 (0, 1) such that g(x, y) > 0 and f(x, y) > 0 for all (x, y) 2 (��, �)⇥ (��, �). All
the calculations that follow are valid (at least) for this rectangle.

To prove equation (1), we use the following formula by E. Deutsch and P. Bala,
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where g(x, y) is given by the second equation in (2). This formula appears at two di↵erent
places in the documentation of sequence A008459. Equation (5) implies
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It follows that
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Note that for each y 2 (��, �),
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Hence, there is a removable singularity at w = 0 for the integrand in the right-hand side of
equation (6).

We claim that, for each y 2 (��, �),

Z
1

w

 
1p

g(w, y)
� 1

!
dw = � log f(w, y) + C (for w 2 (��, �)). (7)

We di↵erentiate the RHS of equation (7) w.r.t. w:
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To finish the proof of equation (7), we need to prove that
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This can be achieved by cross-multiplication of the two fractions.
Since f(0, y) = 1 for each y 2 (��, �), equations (6) and (7) imply
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We then have
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Letting n

⇤ = n/d and k

⇤ = k/d, we then get:
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This completes the proof of equation (1).
To prove equation (3), we use an equation by P. Bala, which is stated in the documen-

tation of sequence A008459. For each n > 0,
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where R(n, y) is given by equations (4). We then have
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This completes the proof of equation (3) as well.
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