Generating functions for circular variants of squares of binomial coefficients

Petros Hadjicostas

October 2017

In this note, we prove two formulae for circular variants of squares of binomial coefficients that appear in sequence <u>A123610</u>. For n > 0 and $0 \le k \le n$, the elements of this (triangular) sequence are defined by

$$T(n,k) = \frac{1}{n} \sum_{d \mid \gcd(n,k)} \phi(d) {\binom{\frac{n}{d}}{\frac{k}{d}}}^2.$$

Here $\phi(d)$ is Euler's totient function at positive integer d. (The sequence <u>A123610</u> actually starts with T(0,0) = 1, but we shall ignore this term.)

First, we prove that the bivariate g.f. of the numbers T(n, k) is

$$\sum_{n=1}^{\infty} \sum_{k=0}^{n} T(n,k) \, x^n y^k = -\sum_{s=1}^{\infty} \frac{\phi(s)}{s} \log f(x^s, y^s), \tag{1}$$

where

$$f(x,y) = \frac{\sqrt{g(x,y)} + 1 - (1+y)x}{2} \quad \text{and} \quad g(x,y) = 1 - 2(1+y)x + (1-y)^2x^2.$$
(2)

For given n > 0, we also prove that the univariate g.f. of the numbers T(n, k) is given by

$$\sum_{k=0}^{\infty} T(n,k)y^k = \frac{1}{n} \sum_{d|n} \phi(d) R\left(\frac{n}{d}, y^d\right),\tag{3}$$

where

$$R(m,y) = [z^m](1 + (1+y)z + yz^2)^m = \frac{1}{m!}\frac{d^m}{dz^m}\left((1 + (1+y)z + yz^2)^m\right).$$
 (4)

Throughout this note, we assume $T(n,k) = 0 = {n \choose k}$ for $0 \le n < k$.

Proof. Since

$$\lim_{(x,y)\to(0,0)} g(x,y) = 1 = \lim_{(x,y)\to(0,0)} f(x,y)$$

there is $\delta \in (0,1)$ such that g(x,y) > 0 and f(x,y) > 0 for all $(x,y) \in (-\delta,\delta) \times (-\delta,\delta)$. All the calculations that follow are valid (at least) for this rectangle.

To prove equation (1), we use the following formula by E. Deutsch and P. Bala,

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} {\binom{n}{k}}^2 x^n y^k = \frac{1}{\sqrt{g(x,y)}},$$
(5)

where g(x, y) is given by the second equation in (2). This formula appears at two different places in the documentation of sequence <u>A008459</u>. Equation (5) implies

$$\sum_{n=1}^{\infty} \sum_{k=0}^{\infty} {\binom{n}{k}}^2 x^{n-1} y^k = \frac{1}{x} \left(\frac{1}{\sqrt{g(x,y)}} - 1 \right)$$

It follows that

$$\sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \binom{n}{k}^2 \frac{x^n}{n} y^k = \int_0^x \frac{1}{w} \left(\frac{1}{\sqrt{g(w,y)}} - 1 \right) dw.$$
(6)

Note that for each $y \in (-\delta, \delta)$,

$$\lim_{w \to 0} \left(\frac{1}{\sqrt{g(w, y)}} - 1 \right) = 0, \text{ and thus, } \lim_{w \to 0} \frac{1}{w} \left(\frac{1}{\sqrt{g(w, y)}} - 1 \right) = 1 + y > 0.$$

Hence, there is a removable singularity at w = 0 for the integrand in the right-hand side of equation (6).

We claim that, for each $y \in (-\delta, \delta)$,

$$\int \frac{1}{w} \left(\frac{1}{\sqrt{g(w,y)}} - 1 \right) dw = -\log f(w,y) + C \quad \text{(for } w \in (-\delta,\delta)\text{)}.$$
(7)

We differentiate the RHS of equation (7) w.r.t. w:

$$-\frac{\partial}{\partial w}\log f(w,y) = \frac{-\frac{\partial}{\partial w}g(w,y)}{\sqrt{g(w,y)} + (1+y)} = \frac{(1+y) - (1-y)^2w + (1+y)\sqrt{g(w,y)}}{\sqrt{g(w,y)} + (1-(1+y)w)} = \frac{(1+y) - (1-y)^2w + (1+y)\sqrt{g(w,y)}}{\sqrt{g(w,y)} + (1-(1+y)w)}.$$

To finish the proof of equation (7), we need to prove that

$$\frac{(1+y) - (1-y)^2 w + (1+y)\sqrt{g(w,y)}}{\sqrt{g(w,y)} + 1 - (1+y)w} = \frac{1 - \sqrt{g(w,y)}}{w}.$$

This can be achieved by cross-multiplication of the two fractions.

Since f(0, y) = 1 for each $y \in (-\delta, \delta)$, equations (6) and (7) imply

$$\sum_{n=1}^{\infty} \sum_{k=0}^{\infty} {\binom{n}{k}}^2 \frac{x^n}{n} y^k = -\log f(x, y).$$

We then have

$$\sum_{n=1}^{\infty}\sum_{k=0}^{\infty}T(n,k)\,x^ny^k = \sum_{n=1}^{\infty}\sum_{k=0}^{\infty}\frac{1}{n}\sum_{d|\operatorname{gcd}(n,k)}\phi(d)\binom{\frac{n}{d}}{\frac{k}{d}}^2\,x^ny^k.$$

Letting $n^* = n/d$ and $k^* = k/d$, we then get:

$$\sum_{n=1}^{\infty} \sum_{k=0}^{\infty} T(n,k) \, x^n y^k = \sum_{d=1}^{\infty} \frac{\phi(d)}{d} \sum_{n^*=1}^{\infty} \sum_{k^*=0}^{\infty} \binom{n^*}{k^*}^2 \frac{(x^d)^{n^*}}{n^*} (y^d)^{k^*} = -\sum_{d=1}^{\infty} \frac{\phi(d)}{d} \log f(x^d, y^d).$$

This completes the proof of equation (1).

To prove equation (3), we use an equation by P. Bala, which is stated in the documentation of sequence <u>A008459</u>. For each n > 0,

$$\sum_{k=0}^{\infty} \binom{n}{k}^2 y^k = R(n,y),$$

where R(n, y) is given by equations (4). We then have

$$\sum_{k=0}^{\infty} T(n,k) y^k = \sum_{k=0}^{\infty} \frac{1}{n} \sum_{d|\gcd(n,k)} \phi(d) \left(\frac{\frac{n}{d}}{\frac{k}{d}}\right)^2 y^k = \frac{1}{n} \sum_{d|n} \phi(d) \sum_{k^*=0}^{\infty} \left(\frac{\frac{n}{d}}{k^*}\right)^2 (y^d)^{k^*} = \frac{1}{n} \sum_{d|n} \phi(d) R\left(\frac{n}{d}, y^d\right).$$

This completes the proof of equation (3) as well.

3