login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A123174 a(n) is the least triprime T for which the Mertens function M(T) = n. 1

%I

%S 20,8,27,164,98,345,343,222,555,590,1358,1388,1394,1407,1406,1419,

%T 3435,3231,3237,3236,3245,3243,3275,3282,3292,3297,8163,8361,8666,

%U 8662,8494,8493,8538,8590

%N a(n) is the least triprime T for which the Mertens function M(T) = n.

%F a(n) = min{T in A014612 and A002321(T) = n}.

%e a(-3) = 20 = 2^2 * 5 = the first triprime T for which the Mertens function M(T) = -3.

%e a(-2) = 8 = 2^3 = the first triprime T for which the Mertens function M(T) = -2.

%e a(-1) = 27 = 3^3 = the first triprime T for which the Mertens function M(T) = -1.

%e a(0) = 164 = 2^2 * 41 = min{A014612 INTERSECTION A028442} = the first triprime T for which the Mertens function M(T) = 0.

%e a(1) = 98 = 2 * 7^2 = min{A014612 INTERSECTION A118684} = the first triprime T for which the Mertens function M(T) = 1.

%e a(2) = 335 = 3 * 5 * 23 = the first triprime T for which the Mertens function M(T) = 2.

%e a(3) = 343 = 7^3 = the first triprime T for which the Mertens function M(T) = 3.

%p isA014612 := proc(n) option remember ; RETURN( numtheory[bigomega](n) = 3) ; end: A008683 := proc(n) option remember ; numtheory[mobius](n) ; end: A002321 := proc(n) option remember ; add(A008683(k),k=1..n) ; end: A123174 := proc(n) local T; for T from 2 do if isA014612(T) then if A002321(T) = n then RETURN(T) ; fi; fi; od: end: for n from -3 to 30 do printf("%d,",A123174(n)) ; od: # _R. J. Mathar_, Jan 27 2009

%Y Cf. A002321, A014612, A028442, A118684.

%K easy,nonn

%O -3,1

%A _Jonathan Vos Post_, Oct 02 2006

%E a(2)=335 replaced with 345 and sequence extended to a(30) by _R. J. Mathar_, Jan 27 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 06:40 EDT 2020. Contains 333119 sequences. (Running on oeis4.)