%I
%S 13,5,3,2,97,229,223,557,569,587,1367,1399,1409,2221,1423,2657,3229,
%T 3389,3253,3251,3271,3323,3301,3299,8353,8161,8641,8423,8419,8627,
%U 11839,8501,8599,8537,8597,8573,8521,8513,11821,11813,19429,19001,11783,11801,11777
%N Least prime p for which Merten's function M(p) = n.
%F a(n) = min{p in A000040 and A002321(p) = n}.
%e a(3) = 13 = the first prime for which the Mertens function M(n) = 3.
%e a(2) = 5 = the first prime for which the Mertens function M(n) = 2.
%e a(1) = 3 = the first prime for which the Mertens function M(n) = 1.
%e a(0) = 2 = min{A000040 INTERSECTION A028442} = the first prime for which the Mertens function M(n) = 0.
%e a(1) = 97 = min{A000040 INTERSECTION A118684} = the first prime for which the Mertens function M(n) = 1.
%e a(2) = 229 = the first prime for which the Mertens function M(n) = 2.
%e a(3) = 223 = the first prime for which the Mertens function M(n) = 3.
%o (PARI) a(n) = {p = 2; while (mertens(p) != n, p = nextprime(p+1)); p;} \\ _Michel Marcus_, Sep 24 2013
%Y Cf. A000040, A002321, A028442, A118684.
%K easy,nonn
%O 3,1
%A _Jonathan Vos Post_, Oct 02 2006
%E More terms from _Michel Marcus_, Sep 24 2013
