login
Decimal expansion of 1/log(3).
2

%I #25 Jun 04 2023 01:45:11

%S 9,1,0,2,3,9,2,2,6,6,2,6,8,3,7,3,9,3,6,1,4,2,4,0,1,6,5,7,3,6,1,0,7,0,

%T 0,0,6,1,2,6,3,6,0,5,7,2,5,5,2,1,1,7,4,4,7,2,6,3,0,2,0,6,3,2,9,5,2,8,

%U 1,0,8,3,1,9,3,7,9,3,7,4,6,6,4,7,2,7,1,7,8,0,8,3,8,0,8,7,1,4,8,2,8,9,7,0,1

%N Decimal expansion of 1/log(3).

%H G. C. Greubel, <a href="/A121935/b121935.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%F Equals 1/log(3).

%F Equals (1/2) * Product_{k>=1} ((1 + 3^(1/2^k))/2). - _Amiram Eldar_, Jun 04 2023

%e 0.9102392266268373936142401657361...

%t RealDigits[1/Log[3], 10, 105][[1]] (* _Alonso del Arte_, Dec 01 2012 *)

%o (PARI) d=105;default(realprecision,d+1);print(k=1/log(3));k=10*k;for(c=0,d,z=floor(k);print1(z,",");k=10*(k-z)) \\ _Klaus Brockhaus_, Sep 06 2006

%o (Magma) SetDefaultRealField(RealField(100)); 1/Log(3); // _G. C. Greubel_, Oct 07 2019

%o (Sage) numerical_approx(1/log(3), digits=100) # _G. C. Greubel_, Oct 07 2019

%Y Cf. A002391 (log(3)).

%K nonn,cons

%O 0,1

%A _Joost de Winter_, Sep 03 2006

%E More terms from _Klaus Brockhaus_, Sep 06 2006