login
Smallest odd number having prime(n) divisors, where prime(n) is the n-th prime=A000040(n).
1

%I #17 Oct 08 2022 22:12:03

%S 3,9,81,729,59049,531441,43046721,387420489,31381059609,

%T 22876792454961,205891132094649,150094635296999121,

%U 12157665459056928801,109418989131512359209,8862938119652501095929,6461081889226673298932241

%N Smallest odd number having prime(n) divisors, where prime(n) is the n-th prime=A000040(n).

%C a(n) is also the smallest number k with the property that the symmetric representation of sigma(k) has prime(n) subparts. - _Omar E. Pol_, Oct 08 2022

%F a(n) = 3^(prime(n)-1) = 3^A006093(n).

%F a(n) = A038547(A000040(n)). - _Omar E. Pol_, Oct 08 2022

%t 3^(Prime[Range[20]]-1) (* _Harvey P. Dale_, Mar 19 2013 *)

%Y Cf. A006093, A061286.

%Y Cf. A000040, A038546, A237593, A279387.

%K nonn

%O 1,1

%A _Lekraj Beedassy_, Aug 30 2006