%I
%S 0,0,1,2,3,6,10,18,29,50,81,136,220,364,589,966,1563,2550,4126,6710,
%T 10857,17622,28513,46224,74792,121160,196041,317434,513619,831430,
%U 1345282,2177322,3522981,5701290,9224881,14927768,24153636,39083988,63239221,102327390
%N Convolution of A066983 with the double Fibonacci sequence A103609.
%C The convolution of 1,0,1,1,1,3,3,7,9,17,25,... (A066983 with 1,0 added to the front) with "A double Fibonacci sequence" (A103609) is the Fibonacci sequence (A000045), with an extra initial 0.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,1,0,1,1).
%F a(n) = F(n)  D(n+1), where F is the Fibonacci sequence (A000045) and D is "A double Fibonacci sequence" (A103609).
%F G.f.: x^3*(x^2x1) / ((x^2+x1)*(x^4+x^21)).  _Colin Barker_, Oct 13 2014
%e a(7)=10 because F(7)=13 and D(8)=3 and a(7)=F(7)D(8).
%o (PARI) concat([0,0], Vec(x^3*(x^2x1)/((x^2+x1)*(x^4+x^21)) + O(x^100))) \\ _Colin Barker_, Oct 13 2014
%Y Cf. A066983, A103609, A000045.
%K nonn,easy
%O 1,4
%A _Graeme McRae_, Jul 23 2006
%E More terms from _Colin Barker_, Oct 13 2014
