login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A121257 Number of conjugated cycles composed of six carbons in (1,1)-nanotubes in terms of the number of naphthalene units. 0

%I

%S 4,20,76,260,840,2616,7940,23644,69380,201220,578064,1647600,4664836,

%T 13132580,36789820,102621956,285174360,789810984,2180889860,

%U 6005842540,16498958324,45225010180,123715684896,337806904800,920819997700

%N Number of conjugated cycles composed of six carbons in (1,1)-nanotubes in terms of the number of naphthalene units.

%C See Table 2 on page 412 of Lukovits and Janezic paper for details.

%D I. Lukovits and D. Janezic, "Enumeration of conjugated circuits in nanotubes", J. Chem. Inf. Comput. Sci., vol. 44 (2004) pp. 410-414.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6, -11, 6, -1).

%F a(n)= 6a(n-1)-11a(n-2)+6a(n-3)-a(n-4)=4*A001870(n-1). G.f.: -4*x*(-1+x)/(x^2-3*x+1)^2. - _R. J. Mathar_, Mar 18 2009

%e If n=5 then the number of conjugated cycles composed of six carbons in (1,1)-nanotubes is 840 which is the fifth term in the sequence. Here n is the number of naphthalene units.

%p Kn11 := proc(n) if n <= 0 then n+2 ; else 3*procname(n-1)-procname(n-2) ; fi; end: Ksub11 := proc(n) if n = -1 then 1 ; elif n = 0 then 3 ; else Kn11(n)+procname(n-1) ; fi; end: a := proc(n) 4*add( Ksub11(j)*Kn11(n-3-j),j=-1..n-2) ; end: seq(a(n),n=0..20) ; # _R. J. Mathar_, Mar 18 2009

%K nonn

%O 1,1

%A _Parthasarathy Nambi_, Aug 22 2006

%E More terms from _R. J. Mathar_, Mar 18 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 05:29 EDT 2021. Contains 347623 sequences. (Running on oeis4.)