

A120745


a(1)=1 and, for n>1, a(n) is the smallest positive integer such that 1+S^2 is prime, where S=Sum[k, k=a(n1)+1,...,a(n)].


1



1, 2, 17, 42, 57, 62, 122, 162, 177, 222, 242, 297, 442, 557, 577, 582, 637, 662, 677, 722, 757, 762, 842, 882, 897, 957, 1002, 1022, 1077, 1102, 1117, 1157, 1182, 1197, 1237, 1282, 1317, 1342, 1357, 1362, 1382, 1417, 1422, 1462, 1602, 1622, 1642, 1662
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

It appears that all differences a(n+1)a(n), after the first, are multiples of 5. The sequence of differences is A120746.


LINKS



CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



