|
|
A120714
|
|
Expansion of 2*(4*x^2+14*x+7)*x^2/((-1-x+x^2)*(6*x^3+10*x^2+2*x-1)).
|
|
2
|
|
|
0, 14, 42, 232, 974, 4522, 20180, 91422, 411782, 1858856, 8384078, 37827386, 170648724, 769875718, 3473203086, 15669055544, 70689396502, 318908566562, 1438725432052, 6490672907694, 29282051536966, 132103184740456
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Previous name was: Sequence produced by 7 X 7 Markov chain based on adjacency matrix of 7-vertex graph with 10 edges, derived from the Fano plane.
Take the standard 7-vertex 7-edge Fano plane graph and add three edges that go around the triangle vertices from the middle of the sides ( connecting the middle of the sides without going through the center)
Characteristic polynomial is 6 - 2 x - 24 x^2 - 3 x^3 + 26 x^4 + 15 x^5 - x^7.
|
|
LINKS
|
Table of n, a(n) for n=1..22.
Eric Weisstein's World of Mathematics, Fano Plane
Index entries for linear recurrences with constant coefficients, signature (0,15,26,-3,-24,-2,6).
|
|
FORMULA
|
a(n)=15a(n-2)+26a(n-3)-3a(n-4)-24a(n-5)-2a(n-6)+6a(n-7).
O.g.f.: 2*(4*x^2+14*x+7)*x^2/((-1-x+x^2)*(6*x^3+10*x^2+2*x-1)). - R. J. Mathar, Dec 05 2007
|
|
MAPLE
|
a[1]:=0: a[2]:=14: a[3]:=42: a[4]:=232: a[5]:=974: a[6]:=4522: a[7]:=20180: a[8]:=91422: for n from 9 to 25 do a[n]:=15*a[n-2]+26*a[n-3]-3*a[n-4]-24*a[n-5]-2*a[n-6]+6*a[n-7] end do: seq(a[n], n=1..25);
|
|
MATHEMATICA
|
LinearRecurrence[{0, 15, 26, -3, -24, -2, 6}, {0, 14, 42, 232, 974, 4522, 20180}, 30] (* Harvey P. Dale, Sep 20 2011 *)
|
|
CROSSREFS
|
Cf. A111384, A120715.
Sequence in context: A212514 A292051 A242897 * A041378 A302219 A302665
Adjacent sequences: A120711 A120712 A120713 * A120715 A120716 A120717
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Roger L. Bagula, Aug 12 2006
|
|
EXTENSIONS
|
Edited by N. J. A. Sloane, Jul 14 2007, Jul 28 2007
New name using g.f. from Joerg Arndt, Sep 21 2021
|
|
STATUS
|
approved
|
|
|
|