The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A120687 Let f(0)=m; f(n+1)= c + d lpf(f(n)), where lpf(n) is the largest prime factor of n (A006530). For any m, for sufficiently large n the sequence f(n) oscillates. In A120684,A120685 the values d=c=1 were considered. Here we consider d=1, c=2 and this allows us to divide integers in 4 classes: C4 (m such that f(n)=4, which is a fixed point); C5 (m such that f(n)=5, then oscillates between 5,7,9); C7 (m such that f(n)=7, then oscillates between 7,9,5); C9 (m such that f(n)=9, then oscillates between 9,5,7); In A120686 we present C5 as the one that includes 5. In A120687 (here) we present C7 as the one that includes 7. In A120688 we present C9 as the one that includes 9. 3
 7, 11, 14, 21, 22, 28, 33, 35, 37, 41, 42, 44, 49, 55, 56, 63, 66, 67, 70, 71, 74, 77, 79, 82, 83, 84, 88, 89, 98, 99, 105, 110, 111, 112, 113, 121, 123, 126, 127, 132, 134, 137, 140, 142, 147, 148, 151, 154, 158, 164, 165, 166, 167, 168, 175, 176, 178, 179, 185, 189 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Note that if f(n) is not prime then f(n+1)= 2 + lpf(f(n)) <= 2 + f(n)/2 and the sequence decreases. If f(n) is prime and 2+f(n) is prime, the sequence will decrease when 2k+f(n) is not prime, which must occur for k>2. The bottom limit case is the cycle (5 7 9). The only other possibility occurs for 2^k numbers that go to the fixed point 4 because 2+lpf(2^k)=2+2=4. LINKS EXAMPLE Oscillation between 5,7,9: 2+lpf(5)=2+5=7; 2+lpf(7)=2+7=9; 2+lpf(9)=2+3=5. Fixed point is 4: 2+lpf(4)=2+2=4. MATHEMATICA fi = Function[n, FactorInteger[n][[ -1, 1]] + 2]; mn = Map[(NestList[fi, #, 6][[ -1]]) &, Range[2, 200]]; Cc4 = Flatten[Position[mn, 4]] + 1; Cc5 = Flatten[Position[mn, 5]] + 1; Cc7 = Flatten[Position[mn, 7]] + 1; Cc9 = Flatten[Position[mn, 9]] + 1; Cc7 CROSSREFS Cf. A120686, A120684, A072268, A006530. Sequence in context: A080837 A168135 A225858 * A194468 A053217 A144931 Adjacent sequences:  A120684 A120685 A120686 * A120688 A120689 A120690 KEYWORD nonn AUTHOR Carlos Alves, Jun 25 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 02:52 EDT 2021. Contains 347620 sequences. (Running on oeis4.)