login
a(n) = min{j : A120502(j) = n}.
2

%I #8 Nov 27 2018 09:33:14

%S 1,5,10,11,17,18,20,21,28,29,31,32,35,36,38,39,47,48,50,51,54,55,57,

%T 58,62,63,65,66,69,70,72,73,82,83,85,86,89,90,92,93,97,98,100,101,104,

%U 105,107,108,113,114

%N a(n) = min{j : A120502(j) = n}.

%H C. Deugau and F. Ruskey, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL12/Ruskey/ruskey6.pdf">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a>, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]

%H C. Deugau and F. Ruskey, <a href="http://www.cs.uvic.ca/~ruskey/Publications/MetaFib/GenMetaFib.html">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a>

%H B. Jackson and F. Ruskey, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v13i1r26">Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes</a>, Electronic Journal of Combinatorics, 13 (2006), #R26, 13 pages.

%F G.f.: P(z) = z / (1-z) * (1 + sum(z^(m^2) * (3 + 1 / (1 - z^(m^2))), m=0..infinity))

%p p := proc(n)

%p if n=1 then return 1; end if;

%p for j from p(n-1)+1 to infinity do

%p if A120502(j) = n then return j; fi; od;

%p end proc;

%Y Cf. A120502, A120524.

%K nonn

%O 1,2

%A _Frank Ruskey_ and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006