login
Number of labeled simply-rooted 2-trees with n labeled vertices (i.e., n+2 vertices altogether; a simply-rooted 2-tree is an externally rooted 2-tree whose root edge belongs to exactly one triangle).
1

%I #6 Jul 24 2022 10:52:49

%S 1,8,156,4896,212520,11793600,797448960,63606090240,5846743244160,

%T 608588457523200,70758332701056000,9088747467351552000,

%U 1278179579224720972800,195333707771834926694400

%N Number of labeled simply-rooted 2-trees with n labeled vertices (i.e., n+2 vertices altogether; a simply-rooted 2-tree is an externally rooted 2-tree whose root edge belongs to exactly one triangle).

%D E. M. Palmer and R. C. Read, On the number of plane 2-trees, J. London Math. Soc. (2), 6, 1973, 583-592.

%F a(n) = (5n-2)!/(4n-1)!.

%F E.g.f. T = T(x) satisfies T(1-T)^4 = x.

%F D-finite with recurrence -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n) +5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-6)*a(n-1)=0. - _R. J. Mathar_, Jul 24 2022

%p seq((5*n-2)!/(4*n-1)!,n=1..16);

%K nonn

%O 1,2

%A _Emeric Deutsch_, Jun 24 2006