login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A120282 Numerator of the coefficients of k^2 term at Sum[Sum[(i-j)^(2n),{i,1,k}],{j,1,k}]. 1

%I #2 Mar 31 2012 13:20:27

%S -1,1,-5,7,-15,7601,-91,3617,-745739,3317609,-5981591,5436374093,

%T -213827575,213745149261,-249859397004145,238988952277727,

%U -28354566442037,26315271553053477373,-108409774812137683,3394075340453838586663

%N Numerator of the coefficients of k^2 term at Sum[Sum[(i-j)^(2n),{i,1,k}],{j,1,k}].

%F a(n) = numerator[Coefficient[Sum[Sum[(i-j)^(2n),{i,1,k}],{j,1,k}],k,2]]. a(n) = A027643(2n+3) - bisection of numerators of poly-Bernoulli numbers B_n^(k) with k=2.

%t Numerator[Coefficient[Table[Sum[Sum[(i-j)^(2n),{i,1,k}],{j,1,k}],{n,1,20}],k,2]].

%Y Cf. A027643.

%K frac,sign

%O 1,3

%A _Alexander Adamchuk_, Jul 06 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 3 06:28 EST 2024. Contains 370499 sequences. (Running on oeis4.)