login
Expansion of (17-25*x-23*x^2+133*x^3)/(1-x)^4.
0

%I #21 Jan 08 2018 01:50:49

%S 17,43,47,131,397,947,1883,3307,5321,8027,11527,15923,21317,27811,

%T 35507,44507,54913,66827,80351,95587,112637,131603,152587,175691,

%U 201017,228667,258743,291347,326581,364547,405347,449083,495857,545771,598927

%N Expansion of (17-25*x-23*x^2+133*x^3)/(1-x)^4.

%C The old name was "A nested recursion from a cubic prime generating polynomial so that only the ending coefficients are necessary to determine the recursion: f[x_] = 17*x^3 - 62*x^2 + 71*x + 17."

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 17*n^3 - 62*n^2 + 71*n + 17.

%F G.f.: (17 - 25*x - 23*x^2 + 133*x^3)/(1-x)^4. - _Colin Barker_, Mar 11 2013

%t LinearRecurrence[{4,-6,4,-1},{17,43,47,131},40] (* _Harvey P. Dale_, Mar 24 2016 *)

%K nonn,less,easy

%O 0,1

%A _Roger L. Bagula_, May 06 2006

%E New name from _Colin Barker_, Mar 11 2013

%E Overall editing by _Joerg Arndt_, Mar 12 2013