The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118175 Binary representation of n-th iteration of the Rule 220 elementary cellular automaton starting with a single black cell. 4
 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS From Franklin T. Adams-Watters, Jul 05 2009: (Start) Divided into rows of length 2n, row n consists of n 1's followed by n 0's. Characteristic function of A061885, 1-based characteristic function of A004201. (End) From Wolfdieter Lang, Dec 05 2012: (Start) The row lengths sequence is A005408 (the odd numbers). The sum of row No. n is given by A000027(n+1). This table is the first difference table of the q-binomial (Gauss polynomial) coefficient table G(2;n,k) = [q^k]( [n+2,2]_q) (see table A008967): a(n,k) = G(2;n,k) - G(2;n-1,k). The o.g.f. for the row polynomials is therefore G2(q,z) = (1-z)/Product((1-q^j*z),j=0..2) = 1/((1-q*z)*(1-q^2*z)). Therefore, a(n,k) determines the number of partitions of k into precisely n parts, each <= 2. It determines also the number of partitions of k into at most 2 parts, each <= n but not <= (n-1), i.e., with part n present. See comments on A008967 regarding partitions. From the o.g.f. G2(q,z) it should be clear that there are 0's for n > k and only 1's for k = n,...,2*n. (End) This sequence is also generated by Rule 252. - Robert Price, Jan 31 2016 a(n) is 1 if the nearest square to n is >= n, otherwise 0. - Branko Curgus Apr 25 1017 LINKS Robert Price, Table of n, a(n) for n = 0..9999 Eric Weisstein's World of Mathematics, Rule 220 Eric Weisstein's World of Mathematics, Elementary Cellular Automaton S. Wolfram, A New Kind of Science FORMULA a(n) = 1 - A079813(n+1). - Philippe Deléham, Jan 02 2012 a(n) = 1 - ceiling(sqrt(n+1)) + round(sqrt(n+1)). - Branko Curgus, Apr 27 2017 [Corrected by Ridouane Oudra, Dec 01 2019] G.f.: x/(1 - x)*( Sum_{n >= 1} x^(n^2-n)*(1-x^n)) =  1/(2-2x)* ( x + x^(3/4)*EllipticTheta(2,0,x) - x*EllipticTheta(3,0,x) ). - Wolfgang Hintze, Jul 28 2017 a(n) = floor(sqrt(n+1)+1/2) - floor(sqrt(n)) = round(sqrt(n+1)) - floor(sqrt(n)). - Ridouane Oudra, Dec 01 2019 EXAMPLE The table a(n,k) begins: n\k 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 ... 0:  1 1:  0  1  1 2:  0  0  1  1  1 3:  0  0  0  1  1  1  1 4:  0  0  0  0  1  1  1  1  1 5:  0  0  0  0  0  1  1  1  1  1  1 6:  0  0  0  0  0  0  1  1  1  1  1  1  1 7:  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1 8:  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1 9:  0  0  0  0  0  0  0  0  0  1  1  1  1  1  1  1  1  1  1 ... Reformatted and extended by Wolfdieter Lang, Dec 2012 Partition examples: a(n,k) = 0 if n>k because the maximal number of parts of a partition of k is k. a(n,n) = 1, n >= 1, because only the partition 1^n has n parts, and 1 <= 2.   a(2,3) = 1 because the only partition of 3 with 2 parts, each <= 2, is 1,2. Also, the only partition of 3 with at most 2 parts, each <= 2, and a part 2 present is also 1,2.   a(5,7) =1 because the only 5-part partition of 7 with maximal part 2 is 1^3,2^3. Also, the only partition of 7 with at most 2 parts, each <= 5, which a part 5 present is 2,5. MATHEMATICA Table[1 - Ceiling[Sqrt[n]] + Round[Sqrt[n]], {n, 1, 257}] (* Branko Curgus, Apr 26 2017 *) Table[{Array[1&, n], Array[0&, n]}, {n, 1, 5}]//Flatten (* Wolfgang Hintze, Jul 28 2017 *) CROSSREFS Cf. A083420, A219238. Sequence in context: A267050 A267355 A070829 * A179762 A263804 A120526 Adjacent sequences:  A118172 A118173 A118174 * A118176 A118177 A118178 KEYWORD nonn,tabf AUTHOR Eric W. Weisstein, Apr 13 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 19:15 EDT 2021. Contains 343951 sequences. (Running on oeis4.)