%I
%S 1,9,25,27,49,81,125,169,225,343,361,441,729,729,841,1331,1369,1521,
%T 2197,2025
%N A cubic quadratic sequence arranged so that the modulo3 equals one cubic sequence is just ahead of the quadratic sequence (called here the Maestro sequence).
%C Arranged so that they are near the Magic numbers (nuclear shell filling numbers): called Maestro as they have to be conducted like an orcestra to get them to behave this way.
%F g[n_] := (n  Floor[n/3])^3 /; Mod[n, 3]  1 == 0 g[n_] := (2*n  1)^2 /; (n < 4) g[n_] := (2*n  1)^2 /; (n > 13) && (n < 17) g[n_] := (2*n  3)^2 /; (n > 4) && (n < 13) g[n_] := (2*n + 3)^2 /; (n >= 17) && (n < 19) g[n_] := (2*n + 5)^2 /; (n >= 18) a(n) = g[n]
%t g[n_] := (n  Floor[n/3])^3 /; Mod[n, 3]  1 == 0 g[n_] := (2*n  1)^2 /; (n < 4) g[n_] := (2*n  1)^2 /; (n > 13) && (n < 17) g[n_] := (2*n  3)^2 /; (n > 4) && (n < 13) g[n_] := (2*n + 3)^2 /; (n >= 17) && (n < 19) g[n_] := (2*n + 5)^2 /; (n >= 18) a=Table[g[n], {n, 1, 20}]
%Y Cf. A018226.
%K nonn,uned
%O 0,2
%A _Roger L. Bagula_, Apr 08 2006
