login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117474 The values of 'a' in a^2 + b^2 = c^2 where b - a = 7 and gcd(a,b,c)=1. 1
5, 8, 48, 65, 297, 396, 1748, 2325, 10205, 13568, 59496, 79097, 346785, 461028, 2021228, 2687085, 11780597, 15661496, 68662368, 91281905, 400193625, 532029948, 2332499396, 3100897797, 13594802765, 18073356848 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The values of 'c' are in A060569.

LINKS

Table of n, a(n) for n=1..26.

Index entries for linear recurrences with constant coefficients, signature (1,6,-6,-1,1).

FORMULA

a(n) = 6*a(n-2) - a(n-4) + 14; a(1)=5, a(2)=8, a(3)=48, a(4)=65.

G.f.: x*(3*x^4 + x^3 - 10*x^2 - 3*x-5) / ((x-1)*(x^2-2*x-1)*(x^2+2*x-1)). [Colin Barker, Dec 17 2012]

EXAMPLE

a(5) = 6*48 - 5 + 14 = 297, 297^2 + 304^2 = 425^2, 304 - 297 = 7, and gcd(297, 304, 425) = 1.

MAPLE

g:=proc(n) option remember; if n=1 then RETURN(5) fi; if n=2 then RETURN(8) fi; if n=3 then RETURN(48) fi; if n=4 then RETURN(65) fi; 6*g(n-2)-g(n-4)+14; end; # N. J. A. Sloane, Oct 06 2007

CROSSREFS

Cf. A060569.

Sequence in context: A109292 A275571 A192379 * A294665 A323139 A284381

Adjacent sequences:  A117471 A117472 A117473 * A117475 A117476 A117477

KEYWORD

nonn,easy

AUTHOR

Andras Erszegi (erszegi.andras(AT)chello.hu), Mar 19 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 07:40 EST 2020. Contains 338868 sequences. (Running on oeis4.)