login
Expansion of (1+x)c(x^2)/((1-xc(x^2))*sqrt(1-4x^2)), c(x) the g.f. of A000108.
2

%I #12 Jul 09 2021 07:39:00

%S 1,2,5,9,21,38,86,157,349,642,1410,2610,5682,10572,22860,42717,91869,

%T 172298,368906,694054,1480486,2793012,5938740,11230834,23813746,

%U 45131348,95462996,181268292,382594884,727747608,1533053976

%N Expansion of (1+x)c(x^2)/((1-xc(x^2))*sqrt(1-4x^2)), c(x) the g.f. of A000108.

%C Row sums of triangle A117184.

%F G.f.: (1+x)(sqrt(1-4x^2)+2x-1)/(2x(1-2x)*sqrt(1-4x^2)); a(n)=sum{k=0..n, C(n+1,(n+k)/2+1)(1+(-1)^(n-k))/2+C(n,(n+k)/2+1/2)(1-(-1)^(n-k))/2}.

%F G.f.: (1+x)(1+2x-sqrt(1-4x^2))/(2x(1-4x^2)); a(n)=(3*2^n-binomial(2*floor((n+1)/2),floor((n+1)/2)))/2; - _Paul Barry_, Jan 20 2008

%F Conjecture: a(n) = A058622(n) + A058622(n+1). [_R. J. Mathar_, Nov 21 2008]

%F Conjecture: -(n+1)*a(n) +(n+1)*a(n-1) +2*(3*n-2)*a(n-2) -4*n*a(n-3) +8*(3-n)*a(n-4)=0. - _R. J. Mathar_, Nov 15 2011

%K easy,nonn

%O 0,2

%A _Paul Barry_, Mar 01 2006