%I #11 Nov 08 2017 04:30:48
%S 1,2,6,21,70,210,589,1592,4218,11069,28932,75528,197165,514920,
%T 1345484,3517427,9198984,24064848,62968211,164789078,431305300,
%U 1128953923,2955237882,7736173110,20252201791,53018445686,138799480530
%N Number of permutations of length n which avoid the patterns 2341, 3214, 4132.
%H D. Callan, T. Mansour, <a href="http://arxiv.org/abs/1705.00933">Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns</a>, arXiv:1705.00933 (2017), Table 2 No 16.
%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (7,-18,21,-12,7,-8,5,-1).
%F G.f.: A(x) = -{x(2x^8-4x^6+11x^5-x^4+6x^3-10x^2+5x-1)}/{(x^3+x^2+x-1)(x^2-3x+1)(x-1)^3}
%K nonn,easy
%O 1,2
%A _Lara Pudwell_, Feb 26 2006