login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of length n which avoid the patterns 1423, 2134, 3214.
0

%I #9 Nov 08 2017 09:38:20

%S 1,2,6,21,74,257,886,3050,10505,36206,124833,430474,1484526,5119597,

%T 17655746,60888801,209985534,724171922,2497434881,8612847430,

%U 29702935745,102435859346,353268294998,1218308608389,4201554149626

%N Number of permutations of length n which avoid the patterns 1423, 2134, 3214.

%H D. Callan, T. Mansour, <a href="http://arxiv.org/abs/1705.00933">Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns</a>, arXiv:1705.00933 [math.CO] (2017), Table 2 No 140.

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (7,-17,19,-9).

%F G.f.: A(x) = -{(2x-1)(3x^2-3x+1)x}/{9x^4-19x^3+17x^2-7x+1}

%K nonn,easy

%O 1,2

%A _Lara Pudwell_, Feb 26 2006