login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116300
n times n+9 gives the concatenation of two numbers m and m+1.
5
26, 66, 3416102887775247376839416334668635, 3756559953325598880263233435801764, 4313503800489302411917772257282208
OFFSET
1,1
LINKS
EXAMPLE
66 * 75 = 49//50, where // denotes concatenation.
MAPLE
F:= proc(d) local t, g, Cands:
t:= 10^d+1;
if NumberTheory:-QuadraticResidue(85, t) <> 1 then return NULL fi;
Cands:= map(s -> rhs(op(s)), [msolve(x^2 + 9*x - 1, t)]);
g:= proc(r) local v; v:= r^2 + 9*r - 1; v >= t*(t-11)/10 and v < t*(t-2) end proc;
op(sort(select(g, Cands)));
end proc:
map
map(F, [$1..82]); # Robert Israel, Aug 25 2023
PROG
(Python)
from itertools import count, islice
from sympy import sqrt_mod_iter
def A116300_gen(): # generator of terms
for l in count(1):
m = 10**l+1
k, r, dlist = m*(m-11)/10, m*(m-2), []
for a in sqrt_mod_iter(85, m):
d = ((a if a&1 else a+m)>>1)-4
if k<d*(d+9)<=r:
dlist.append(d)
yield from sorted(dlist)
A116300_list = list(islice(A116300_gen(), 14)) # Chai Wah Wu, May 07 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Feb 06 2006
STATUS
approved