# A note on the cylinder poset 

Clay Thomas<br>claytont@cs.princeton.edu

Corey Sinnamon<br>sinnamon@cs.princeton.edu

Linda Cai
tcai@cs.princeton.edu
July 16, 2019

We define $\mathrm{Cyl}_{n}$, the cylinder poset of order $n$, as follows: its elements are pairs $\{(i, j) \mid i, j \in[n]\}$, and its covering relations take two forms:

- $(i, j) \succ(i, j-1)$ for $i \in[n], j \in[2, n]$. These relations define the "vertical chains" $V_{i}=$ $\{(i, j)\}_{j \in[n]}$.
- $(i, j) \succ(i-1, j-1)$ for $i \in[n], j \in[2, n]$ and $(1, j) \succ(n, j-1)$ for $j \in[2, n]$. These relations define the "diagonal chains" $D_{k}=\{(i, k+(i-1) \bmod n)\}_{i \in[n]}$, where $\bmod$ "wraps around" to 1 instead of to 0 .

It's called a cylinder poset because the diagonal grids "jump" from one side to the other as if the poset were on the surface of a cylinder. For a node $n=(i, j)$, we refer to $j$ as the height of $n$. For a set $S$ of vertices of $\mathrm{Cyl}_{n}$, we define the height of $S$ along $V_{i}$ as the maximum height of an element of $S \cap V_{i}$, or 0 if $S \cap V_{i}=\emptyset$.


The main result of this note is to count the number of downward closed sets in $\mathrm{Cyl}_{n}$ using known path-counting results.

First, it's helpful to observe that there's a bijection between the downward closed sets of $\mathrm{Cyl}_{n}$ and the set of sequences $\left(a_{1}, \ldots, a_{n}\right)$ such that $a_{i} \in[0, n]$ for $i \in[n], a_{i+1} \leq a_{i}+1$ for $i \in[n-1]$, and $a_{1} \leq a_{n}+1$. Given a downward closed set $S \subseteq \operatorname{Cyl}_{n}$, the bijection is given by letting $a_{i}$ be the height of $S$ along $V_{i}$. The condition that $a_{i+1} \bmod n \leq a_{i}+1$ is equivalent to being downward closed along the diagonal chains $\left\{D_{k}\right\}$.

Now, fix $\ell$ as the height of $S$ along $V_{1}$. Note that taking $\ell=0,1, \ldots, n$ partitions the collection of downward closed sets. Now we identify the downward closed set $S$ with its upward boundary in the Hasse diagram of $\mathrm{Cyl}_{n}$. This upward boundary can then be uniquely identified with a lattice path starting at $(1, \ell)$ where at each node you can take an upward edge along a diagonal chain $D_{k}$ or a downward edge along a vertical chain $V_{i}$. This ensures that $S$ is downward closed along each $V_{i}$ and for the "internal" diagonal relations, i.e. those of the form $(i+1, j+1) \succ(i, j)$. To satisfy the relations $(1, j+1) \succ(n, j)$, we just need the path to terminate at $(n, \ell-1)$. To properly represent the fact that $S \cap V_{i}=\emptyset$ for a given $i$, we draw elements of height 0 and -1 , and when $S \cap V_{i}=\emptyset$ we let the path pass through $(i-1,-1)$ and $(i, 0)$. A path of this form uniquely determines a downward-closed set.


Thus, the problem is reduced to counting lattice paths in a square grid with "missing corners", i.e. those paths which avoid certain "translated diagonals". This problem was clasically solved. For an accessible proof, see [DR15] (https://oeis.org/A136439/a136439.pdf), Equation (5).

Theorem 1. The number of monotonic integer lattice paths from $(0,0)$ to $(a, b)$ avoiding the lines $y=x+s$ and $y=x-t$ is equal to

$$
\mathscr{L}(a, b ; s, t)=\sum_{k \in \mathbb{Z}}\left[\binom{a+b}{b+k(s+t)}-\binom{a+b}{b+k(s+t)+t}\right]
$$

where $\binom{u}{v}=0$ for $v<0$ or $v>u$.
For a fixed $n$, in the reduction to the above problem $a=n-1$ and $b=n$ are constant. With some careful counting you see that $t=\ell+1$ and $s=n-\ell+2$ (The number of "forbidden nodes" in the bottom corner is $(n+1)-(\ell+2)=n-\ell-1$, so $t=n-1-(n-\ell-1)+1$. Likewise, there are $(\ell-1+n)-n=\ell-1$ forbidden nodes in the upper corner, so $s=n-(\ell-1)+1$.)

Thus, the number of downward closed sets in $\mathrm{Cyl}_{n}$ is exactly

$$
\begin{aligned}
\sum_{\ell=0}^{n} \mathscr{L}(n-1, n ; n-\ell+2, \ell+1) & =\sum_{\ell=0}^{n} \sum_{k \in \mathbb{Z}}\binom{2 n-1}{n+k(n+3)}-\binom{2 n-1}{n+\ell+1+k(n+3)} \\
& =\sum_{\ell=0}^{n}\binom{2 n-1}{n}-\binom{2 n-1}{n+\ell+1}-\binom{2 n-1}{\ell-2} \\
& =(n+1)\binom{2 n-1}{n}-\sum_{\ell=0}^{n}\binom{2 n-1}{n+\ell+1}+\binom{2 n-1}{\ell-2} \\
& =(n+1)\binom{2 n-1}{n}-\left(-\binom{2 n-1}{n-1}-\binom{2 n-1}{n}+\sum_{k=0}^{2 n-1}\binom{2 n-1}{k}\right) \\
& =(n+3)\binom{2 n-1}{n}-2^{2 n-1}
\end{aligned}
$$

## References

[DR15] Nachum Dershowitz and Christian Rinderknecht. The average height of catalan trees by counting lattice paths. Mathematics Magazine, 88(3):187-195, 2015.

