A note on the cylinder poset

Clay Thomas Corey Sinnamon claytont@cs.princeton.edu sinnamon@cs.princeton.edu

> Linda Cai tcai@cs.princeton.edu

> > July 16, 2019

We define Cyl_n , the *cylinder poset* of order n, as follows: its elements are pairs $\{(i, j) | i, j \in [n]\}$, and its covering relations take two forms:

- $(i,j) \succ (i,j-1)$ for $i \in [n], j \in [2,n]$. These relations define the "vertical chains" $V_i = \{(i,j)\}_{j \in [n]}$.
- $(i, j) \succ (i 1, j 1)$ for $i \in [n]$, $j \in [2, n]$ and $(1, j) \succ (n, j 1)$ for $j \in [2, n]$. These relations define the "diagonal chains" $D_k = \{(i, k + (i 1) \mod n)\}_{i \in [n]}$, where mod "wraps around" to 1 instead of to 0.

It's called a cylinder poset because the diagonal grids "jump" from one side to the other as if the poset were on the surface of a cylinder. For a node n = (i, j), we refer to j as the *height* of n. For a set S of vertices of Cyl_n , we define the *height of* S along V_i as the maximum height of an element of $S \cap V_i$, or 0 if $S \cap V_i = \emptyset$.

The main result of this note is to count the number of downward closed sets in Cyl_n using known path-counting results.

First, it's helpful to observe that there's a bijection between the downward closed sets of Cyl_n and the set of sequences (a_1, \ldots, a_n) such that $a_i \in [0, n]$ for $i \in [n]$, $a_{i+1} \leq a_i + 1$ for $i \in [n-1]$, and $a_1 \leq a_n + 1$. Given a downward closed set $S \subseteq \operatorname{Cyl}_n$, the bijection is given by letting a_i be the height of S along V_i . The condition that $a_{i+1 \mod n} \leq a_i + 1$ is equivalent to being downward closed along the diagonal chains $\{D_k\}$.

Now, fix ℓ as the height of S along V_1 . Note that taking $\ell = 0, 1, \ldots, n$ partitions the collection of downward closed sets. Now we identify the downward closed set S with its upward boundary in the Hasse diagram of Cyl_n . This upward boundary can then be uniquely identified with a lattice path starting at $(1, \ell)$ where at each node you can take an upward edge along a diagonal chain D_k or a downward edge along a vertical chain V_i . This ensures that S is downward closed along each V_i and for the "internal" diagonal relations, i.e. those of the form $(i + 1, j + 1) \succ (i, j)$. To satisfy the relations $(1, j + 1) \succ (n, j)$, we just need the path to terminate at $(n, \ell - 1)$. To properly represent the fact that $S \cap V_i = \emptyset$ for a given i, we draw elements of height 0 and -1, and when $S \cap V_i = \emptyset$ we let the path pass through (i - 1, -1) and (i, 0). A path of this form uniquely determines a downward-closed set.

Thus, the problem is reduced to counting lattice paths in a square grid with "missing corners", i.e. those paths which avoid certain "translated diagonals". This problem was clasically solved. For an accessible proof, see [DR15] (https://oeis.org/A136439/a136439.pdf), Equation (5).

Theorem 1. The number of monotonic integer lattice paths from (0,0) to (a,b) avoiding the lines y = x + s and y = x - t is equal to

$$\mathscr{L}(a,b;s,t) = \sum_{k \in \mathbb{Z}} \left[\binom{a+b}{b+k(s+t)} - \binom{a+b}{b+k(s+t)+t} \right]$$

where $\binom{u}{v} = 0$ for v < 0 or v > u.

For a fixed n, in the reduction to the above problem a = n - 1 and b = n are constant. With some careful counting you see that $t = \ell + 1$ and $s = n - \ell + 2$ (The number of "forbidden nodes" in the bottom corner is $(n + 1) - (\ell + 2) = n - \ell - 1$, so $t = n - 1 - (n - \ell - 1) + 1$. Likewise, there are $(\ell - 1 + n) - n = \ell - 1$ forbidden nodes in the upper corner, so $s = n - (\ell - 1) + 1$.)

Thus, the number of downward closed sets in Cyl_n is exactly

$$\begin{split} \sum_{\ell=0}^{n} \mathscr{L}(n-1,n;n-\ell+2,\ell+1) &= \sum_{\ell=0}^{n} \sum_{k\in\mathbb{Z}} \binom{2n-1}{n+k(n+3)} - \binom{2n-1}{n+\ell+1+k(n+3)} \\ &= \sum_{\ell=0}^{n} \binom{2n-1}{n} - \binom{2n-1}{n+\ell+1} - \binom{2n-1}{\ell-2} \\ &= (n+1)\binom{2n-1}{n} - \sum_{\ell=0}^{n} \binom{2n-1}{n+\ell+1} + \binom{2n-1}{\ell-2} \\ &= (n+1)\binom{2n-1}{n} - \binom{-\binom{2n-1}{n-1}}{-\binom{2n-1}{n-1}} - \binom{2n-1}{n} + \sum_{k=0}^{2n-1} \binom{2n-1}{k} \end{pmatrix} \\ &= (n+3)\binom{2n-1}{n} - 2^{2n-1} \end{split}$$

References

[DR15] Nachum Dershowitz and Christian Rinderknecht. The average height of catalan trees by counting lattice paths. *Mathematics Magazine*, 88(3):187–195, 2015.